Materials Today Advances ( IF 8.1 ) Pub Date : 2020-06-24 , DOI: 10.1016/j.mtadv.2020.100085 S. Wang , N.L. Pomerantz , Z. Dai , W. Xie , E.E. Anderson , T. Miller , S.A. Khan , G.N. Parsons
Highly selective and lightweight protective suits featuring excellent breathability, mechanical robustness, and catalytic degradation performance toward chemical warfare agents (CWAs) are highly desirable for first responders and the military. However, current multilayered state-of-the-art chemical/biological (CB) protective textiles containing activated carbon and separate aerosol-protective layers exhibit several drawbacks including high thermal burden and secondary contamination. Herein, we present for the first time, a highly sorptive, breathable, and mechanically strong aerosol-protective layered fabric with prominent catalytic degradation capability of CWA simulant, through novel material selection and engineering design. The electrospun polymer of intrinsic microporosity (PIM-1) fiber web with hierarchical porosity is used as a matrix material, preventing toxic gas penetration while providing pathways for air and water vapor molecules. Polyacrylonitrile (PAN) nanofibers assembled with PIM-1 fibers via a layer-by-layer electrospun-deposition approach are shown to achieve significantly enhanced mechanical integrity and filtration efficiency, due to the high polar chemical structure and small fiber diameter of PAN. The subsequent incorporation of UiO-66-NH2 particles, a Zr-based metal-organic framework (MOF), further enhances the sorption capacity while maintaining excellent filtration efficiency, mechanical strength, and breathability, and also endows the fiber web with remarkable catalytic degradation towards CWA simulants. The resulting PIM/PAN/MOF composite fiber mat demonstrates unprecedented integrated properties with water vapor transmission rate of 1,013 g/m2·24 h, surface area of 574 m2/g, increased tensile strength (more than 70 times compared to neat PIM-1 fiber web), and PM2.5 and PM10 filtration efficiency of 99.88% and 99.94%, respectively, comparable to commercial polypropylene (PP) non-woven textile. This facile and effective fabrication of such a multifunctional composite fiber mat is valuable for the design of protective garments in health care, personal protective gear, and law enforcement and military uniforms.
中文翻译:
基于固有微孔性(PIM)的纤维毡的聚合物:将颗粒过滤和化学战剂模拟物的快速催化水解结合成高度吸附,透气和机械坚固的纤维基质
具有出色的透气性,机械强度和对化学战剂(CWAs)的催化降解性能的高选择性轻量级防护服是急救人员和军方的理想之选。然而,当前的包含活性炭和单独的气溶胶保护层的多层的最先进的化学/生物(CB)保护纺织品表现出若干缺点,包括高热负荷和二次污染。在此,我们首次通过新颖的材料选择和工程设计,展示了具有高吸附性,透气性和机械强度的气溶胶防护层状织物,并具有明显的CWA模拟物催化降解能力。具有固有孔隙率的固有微孔(PIM-1)纤维网的静电纺丝聚合物用作基质材料,可防止有毒气体渗透,同时为空气和水蒸气分子提供通路。通过逐层电纺沉积方法与PIM-1纤维组装在一起的聚丙烯腈(PAN)纳米纤维由于具有高极性化学结构和PAN较小的纤维直径,因此可显着提高机械完整性和过滤效率。随后并入UiO-66-NH 由于PAN具有高极性化学结构和较小的纤维直径。随后并入UiO-66-NH 由于PAN具有高极性化学结构和较小的纤维直径。随后并入UiO-66-NHZr基金属有机骨架(MOF)2个颗粒可进一步提高吸附能力,同时保持出色的过滤效率,机械强度和透气性,并且使纤维网对CWA模拟物具有显着的催化降解作用。所得的PIM / PAN / MOF复合纤维毡具有前所未有的综合性能,水蒸气透过率为1,013 g / m 2 ·24 h,表面积为574 m 2 / g,抗张强度提高了(与纯PIM相比提高了70倍以上) -1纤维网),以及PM 2.5和PM 10过滤效率分别为99.88%和99.94%,可与商业聚丙烯(PP)无纺布媲美。这种多功能复合纤维垫的这种简便有效的制造方法对于设计医疗保健,个人防护装备以及执法和军事制服中的防护服具有重要意义。