Energy Storage Materials ( IF 18.9 ) Pub Date : 2020-06-23 , DOI: 10.1016/j.ensm.2020.06.010 Xiao Wang , Yaguang Li , Pratteek Das , Shuanghao Zheng , Feng Zhou , Zhong-Shuai Wu
The aqueous zinc-ion batteries (ZIBs) are highly competitive, exceptionally safe electrochemical energy storage devices, but suffer from the poor cyclability and unattainable capacity caused by structural instability of cathode materials. In this work, we reported a general 2D template ion-adsorption approach to assembly 2D amorphous V2O5/graphene heterostructures with highly stable layer-by-layer stacked structure and ultrathin thickness of 6 nm, for high-safe, rechargeable aqueous ZIBs. Owing to the unique features with strong synergistic effect, the resulting ZIBs show high capacity of 447 mAh/g at 0.3 A/g, extraordinary rate capability of 202 mAh/g at 30 A/g, and ultra-long lifespan up to 20,000 cycles at 30 A/g, greatly outperforming the vanadium based ZIBs reported. Moreover, the new-concept planar interdigital zinc ion micro-batteries, constructed by mask-assisted filtration strategy, display large volumetric capacity of 63 mAh/cm3 at 0.2 mA/cm2, high volumetric energy density of 49 mWh/cm3, robust flexibility, and impressive modular integration in series and in parallel for boosting the capacity and voltage output, demonstrative of great potential as microscale power sources. Therefore, this approach will offer various opportunities to construct layer-by-layer stacked 2D heterostructures with fast ion-electron conductivity for ZIBs and other batteries.
中文翻译:
具有强耦合作用的层层叠叠非晶V 2 O 5 /石墨烯2D异质结构,用于超长循环寿命的高容量水性锌离子电池
水性锌离子电池(ZIB)是具有高度竞争力的,非常安全的电化学储能设备,但由于阴极材料的结构不稳定性而导致循环性能差和容量无法达到。在这项工作中,我们报告了组装2D非晶V 2 O 5的通用2D模板离子吸附方法/石墨烯异质结构具有高度稳定的逐层堆叠结构和6 nm的超薄厚度,适用于高安全性,可充电的水性ZIB。由于具有强大的协同作用的独特功能,所得的ZIB在0.3 A / g的条件下显示出447 mAh / g的高容量,在30 A / g的情况下显示出202 mAh / g的超常倍率能力,并具有高达20,000个循环的超长寿命在30 A / g时,大大优于报道的钒基ZIB。此外,通过面罩辅助过滤策略构造的新概念平面叉指式锌离子微电池在0.2 mA / cm 2时显示63 mAh / cm 3的大容量,在49 mWh / cm 3时具有高的能量密度,强大的灵活性以及令人印象深刻的串联和并联模块化集成,以提高容量和电压输出,证明了其作为微型电源的巨大潜力。因此,该方法将为构建用于ZIB和其他电池的具有快速离子电子传导性的逐层堆叠2D异质结构提供各种机会。