当前位置:
X-MOL 学术
›
Nat. Protoc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
用于单细胞基因调控网络分析的可扩展SCENIC工作流程。
Nature Protocols ( IF 13.1 ) Pub Date : 2020-06-19 , DOI: 10.1038/s41596-020-0336-2 Bram Van de Sande 1, 2 , Christopher Flerin 1, 2 , Kristofer Davie 1 , Maxime De Waegeneer 1, 2 , Gert Hulselmans 1, 2 , Sara Aibar 1, 2 , Ruth Seurinck 3, 4 , Wouter Saelens 3, 4 , Robrecht Cannoodt 3, 4, 5 , Quentin Rouchon 3, 4 , Toni Verbeiren 6, 7 , Dries De Maeyer 6 , Joke Reumers 6 , Yvan Saeys 3, 4 , Stein Aerts 1, 2
"点击查看英文标题和摘要"
更新日期:2020-06-19
Nature Protocols ( IF 13.1 ) Pub Date : 2020-06-19 , DOI: 10.1038/s41596-020-0336-2 Bram Van de Sande 1, 2 , Christopher Flerin 1, 2 , Kristofer Davie 1 , Maxime De Waegeneer 1, 2 , Gert Hulselmans 1, 2 , Sara Aibar 1, 2 , Ruth Seurinck 3, 4 , Wouter Saelens 3, 4 , Robrecht Cannoodt 3, 4, 5 , Quentin Rouchon 3, 4 , Toni Verbeiren 6, 7 , Dries De Maeyer 6 , Joke Reumers 6 , Yvan Saeys 3, 4 , Stein Aerts 1, 2
Affiliation
该协议说明了如何使用软件容器和Nextflow管道对单细胞RNA测序数据执行快速SCENIC分析以及标准最佳实践步骤。SCENIC重建调控因子(即转录因子及其靶基因),以评估这些发现的调控因子在单个细胞中的活性,并使用这些细胞活性模式来寻找有意义的细胞簇。在这里,我们介绍了SCENIC的改进版本,其中包括一些改进。SCENIC已在Python(pySCENIC)中进行了重构和重新实现,从而使速度提高了十倍,并且已打包到容器中以方便使用。现在也可以使用表观基因组轨迹数据库以及主题来完善规则。在此协议中,我们解释了SCENIC的不同步骤:工作流程从描述所有细胞的基因丰度的计数矩阵开始,包括三个阶段。首先,使用逐目标回归方法(GRNBoost2)推断共表达模块。接下来,使用顺式调控基序发现(cisTarget)从这些模块中修剪掉间接靶标。最后,这些调节子的活性是通过调节调节子的靶基因(AUCell)的富集分数来量化的。非线性投影方法可用于显示基于这些调节子的细胞活动模式的细胞视觉分组。可以将结果导出为织机文件,并在SCope Web应用程序中显示。在两个用例中说明了该协议:外周血单核细胞数据集和一组单细胞RNA测序癌症实验。对于10,000个基因和50个基因的数据集,
"点击查看英文标题和摘要"