当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium–metal batteries operating at 35 °C
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-06-17 , DOI: 10.1039/d0ta00335b Gulian Wang 1, 2, 3, 4, 5 , Xingyu Zhu 1, 2, 3, 4, 5 , Arif Rashid 1, 2, 3, 4, 5 , Zhongli Hu 1, 2, 3, 4, 5 , Pengfei Sun 1, 2, 3, 4, 5 , Qiaobao Zhang 5, 6, 7, 8, 9 , Li Zhang 1, 2, 3, 4, 5
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-06-17 , DOI: 10.1039/d0ta00335b Gulian Wang 1, 2, 3, 4, 5 , Xingyu Zhu 1, 2, 3, 4, 5 , Arif Rashid 1, 2, 3, 4, 5 , Zhongli Hu 1, 2, 3, 4, 5 , Pengfei Sun 1, 2, 3, 4, 5 , Qiaobao Zhang 5, 6, 7, 8, 9 , Li Zhang 1, 2, 3, 4, 5
Affiliation
The poor ionic conductivity and high working temperatures (normally >60 °C) of poly (ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) greatly limit their application in all-solid-state batteries. To mitigate these issues, for the first time, we report here an organic polymer filler, hydrolyzed polymaleic anhydride (HPMA), that can greatly suppress PEO crystallinity, enhance the ionic conductivity of PEO-based SPEs (1.13 × 10−4 S cm−1 at 35 °C) and support battery operation at 35 °C. PEO–HPMA SPEs feature high flexibility, incombustibility, wide electrochemical operating window and stability against lithium. The as-derived Li/PEO–HPMA/LiFePO4 all-solid-state batteries show outstanding rate capability, high reversible capacity and long-term stability up to 1250 cycles. More impressively, the soft-packaged Li/PEO–HPMA/LiFePO4 cells show high safety under various extreme conditions such as cutting and perforation. The PEO–HPMA SPE-based quasi-solid-state lithium-sulfur batteries are also presented. This work demonstrates a facile approach that unlocks the low-temperature application of PEO SPE-based all-solid-state batteries.
中文翻译:
有机聚合物填料非晶化的聚(环氧乙烷)电解质使全固态锂金属电池能够在35°C的温度下工作
聚环氧乙烷(PEO)基固体聚合物电解质(SPEs)的差离子传导性和高工作温度(通常> 60°C)极大地限制了它们在全固态电池中的应用。为缓解这些问题,对于第一次,我们在这里报告的有机聚合物填料,水解聚马来酸酐(HPMA),可以大大抑制PEO的结晶度,增强基于PEO-SPES(1.13×10的离子导电性-4小号厘米- 1在35°C下工作),并支持35°C下的电池运行。PEO–HPMA SPE具有高度的柔韧性,不燃性,宽的电化学操作范围以及对锂的稳定性。Li / PEO–HPMA / LiFePO 4的来源全固态电池显示出出色的速率能力,高可逆容量和长达1250次循环的长期稳定性。更令人印象深刻的是,软包装的Li / PEO–HPMA / LiFePO 4电池在各种极端条件下(例如切割和穿孔)都显示出很高的安全性。还介绍了基于PEO–HPMA SPE的准固态锂硫电池。这项工作展示了一种简便的方法,可以解锁基于PEO SPE的全固态电池的低温应用。
更新日期:2020-07-07
中文翻译:
有机聚合物填料非晶化的聚(环氧乙烷)电解质使全固态锂金属电池能够在35°C的温度下工作
聚环氧乙烷(PEO)基固体聚合物电解质(SPEs)的差离子传导性和高工作温度(通常> 60°C)极大地限制了它们在全固态电池中的应用。为缓解这些问题,对于第一次,我们在这里报告的有机聚合物填料,水解聚马来酸酐(HPMA),可以大大抑制PEO的结晶度,增强基于PEO-SPES(1.13×10的离子导电性-4小号厘米- 1在35°C下工作),并支持35°C下的电池运行。PEO–HPMA SPE具有高度的柔韧性,不燃性,宽的电化学操作范围以及对锂的稳定性。Li / PEO–HPMA / LiFePO 4的来源全固态电池显示出出色的速率能力,高可逆容量和长达1250次循环的长期稳定性。更令人印象深刻的是,软包装的Li / PEO–HPMA / LiFePO 4电池在各种极端条件下(例如切割和穿孔)都显示出很高的安全性。还介绍了基于PEO–HPMA SPE的准固态锂硫电池。这项工作展示了一种简便的方法,可以解锁基于PEO SPE的全固态电池的低温应用。