Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polyaniline Hybrid Nanofibers via Green Interfacial Polymerization for All-Solid-State Symmetric Supercapacitors.
ACS Omega ( IF 3.7 ) Pub Date : 2020-06-15 , DOI: 10.1021/acsomega.0c01158 Gayatri Konwar 1 , Saurav Ch Sarma 2, 3 , Debajyoti Mahanta 1 , Sebastian C Peter 2, 3
ACS Omega ( IF 3.7 ) Pub Date : 2020-06-15 , DOI: 10.1021/acsomega.0c01158 Gayatri Konwar 1 , Saurav Ch Sarma 2, 3 , Debajyoti Mahanta 1 , Sebastian C Peter 2, 3
Affiliation
In this study, we report an enormously simple green approach for the synthesis of polyaniline hybrid (PANI-SO) nanofibers in emeraldine salt form. We have carried out the synthesis via an interfacial polymerization method using vegetable oil as an organic phase instead of the commonly used solvents like CHCl3, CCl4, etc. Characterization techniques such as Fourier transform infrared (FTIR), UV–visible, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) have been used for studying the synthesized polyaniline hybrid nanofibers. An interesting observation is the crystallization of small organic molecules in the PANI matrix. PANI-SO shows a pseudocapacitance behavior with a capacitance value of 302 F g–1 at a current density of 1 A g–1. In addition, the material shows an energy density of 26.8 W h kg–1 and a maximum power density of 402.6 W kg–1. Furthermore, the PANI-SO electrode maintains about 84% of the initial capacitance after 1000 cycles. Similarly, the PANI-SO symmetric solid-state supercapacitor shows an areal capacitance of 118.7 mF cm–2 and retains a stability of 80% even after 1000 cycles. Thus, the PANI-SO electrode shows a good cyclic performance, which implies the structural stability of PANI-SO nanofibers. The electrochemical properties of PANI-SO are compared with those of PANI nanofibers synthesized by taking CHCl3 as the organic phase and keeping all other parameters identical. PANI-SO is observed to be a superior material compared to the latter one. All electrochemical analyses show that the PANI synthesized using cooking soyabean oil (PANI-SO) is an effective supercapacitor material.
中文翻译:
通过绿色界面聚合的聚苯胺杂化纳米纤维,用于全固态对称超级电容器。
在这项研究中,我们报告了一种非常简单的绿色方法,用于合成翡翠盐形式的聚苯胺杂化(PANI-SO)纳米纤维。我们已经通过界面聚合方法进行了合成,使用植物油作为有机相代替了常用的溶剂如CHCl 3,CCl 4等等,已经使用了诸如傅里叶变换红外(FTIR),紫外可见光,粉末X射线衍射(PXRD),扫描电子显微镜(SEM),热重分析(TGA)和差示扫描量热法(DSC)的表征技术。用于研究合成的聚苯胺杂化纳米纤维。一个有趣的发现是PANI基质中有机小分子的结晶。PANI-SO示出了赝行为与302 F G的电容值-1在1A g的电流密度-1。此外,该材料的能量密度为26.8 W h kg –1,最大功率密度为402.6 W kg –1。此外,PANI-SO电极在1000次循环后仍保持约84%的初始电容。同样,PANI-SO对称固态超级电容器的面积电容为118.7 mF cm -2,即使经过1000次循环也保持80%的稳定性。因此,PANI-SO电极显示出良好的循环性能,这暗示了PANI-SO纳米纤维的结构稳定性。将PANI-SO的电化学性质与以CHCl 3为有机相并保持所有其他参数相同的PANI纳米纤维的电化学性质进行了比较。与后者相比,观察到PANI-SO是一种优越的材料。所有电化学分析表明,使用蒸煮大豆油(PANI-SO)合成的PANI是一种有效的超级电容器材料。
更新日期:2020-06-23
中文翻译:
通过绿色界面聚合的聚苯胺杂化纳米纤维,用于全固态对称超级电容器。
在这项研究中,我们报告了一种非常简单的绿色方法,用于合成翡翠盐形式的聚苯胺杂化(PANI-SO)纳米纤维。我们已经通过界面聚合方法进行了合成,使用植物油作为有机相代替了常用的溶剂如CHCl 3,CCl 4等等,已经使用了诸如傅里叶变换红外(FTIR),紫外可见光,粉末X射线衍射(PXRD),扫描电子显微镜(SEM),热重分析(TGA)和差示扫描量热法(DSC)的表征技术。用于研究合成的聚苯胺杂化纳米纤维。一个有趣的发现是PANI基质中有机小分子的结晶。PANI-SO示出了赝行为与302 F G的电容值-1在1A g的电流密度-1。此外,该材料的能量密度为26.8 W h kg –1,最大功率密度为402.6 W kg –1。此外,PANI-SO电极在1000次循环后仍保持约84%的初始电容。同样,PANI-SO对称固态超级电容器的面积电容为118.7 mF cm -2,即使经过1000次循环也保持80%的稳定性。因此,PANI-SO电极显示出良好的循环性能,这暗示了PANI-SO纳米纤维的结构稳定性。将PANI-SO的电化学性质与以CHCl 3为有机相并保持所有其他参数相同的PANI纳米纤维的电化学性质进行了比较。与后者相比,观察到PANI-SO是一种优越的材料。所有电化学分析表明,使用蒸煮大豆油(PANI-SO)合成的PANI是一种有效的超级电容器材料。