Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lower Critical Solution Temperature-Driven Self-Coacervation of Nonionic Polyester Underwater Adhesives.
ACS Nano ( IF 15.8 ) Pub Date : 2020-06-15 , DOI: 10.1021/acsnano.0c02396 Amal Narayanan 1 , Joshua R Menefee 1 , Qianhui Liu 1 , Ali Dhinojwala 1 , Abraham Joy 1
ACS Nano ( IF 15.8 ) Pub Date : 2020-06-15 , DOI: 10.1021/acsnano.0c02396 Amal Narayanan 1 , Joshua R Menefee 1 , Qianhui Liu 1 , Ali Dhinojwala 1 , Abraham Joy 1
Affiliation
To enable attachment to underwater surfaces, aquatic fauna such as mussels and sandcastle worms utilize the advantages of coacervation to deliver concentrated protein-rich adhesive cocktails in an aqueous environment onto underwater surfaces. Recently, a mussel adhesive protein Mfp-3s, was shown to exhibit a coacervation-based adhesion mechanism. Current synthetic strategies to mimic Mfp-3s often involve complexation of oppositely charged polymers. Such complex coacervates are more sensitive to changes in pH and salt, thereby limiting their utility to narrow ranges of pH and ionic strength. In this study, by taking advantage of the lower critical solution temperature-driven coacervation, we have created mussel foot protein-inspired, tropoelastin-like, bioabsorbable, nonionic, self-coacervating polyesters for the delivery of photo-cross-linkable adhesives underwater and to overcome the challenges of adhesion in wet or underwater environments. We describe the rationale for their design and the underwater adhesive properties of these nonionic adhesives. Compared to previously reported coacervate adhesives, these “charge-free” polyesters coacervate in wide ranges of pH (3–12) and ionic strength (0–1 M NaCl) and rapidly (<300 s) adhere to substrates submerged underwater. The study introduces smart materials that mimic the self-coacervation and environmental stability of Mfp-3s and demonstrate the potential for biological adhesive applications where high water content, salts, and pH changes can be expected.
中文翻译:
非离子聚酯水下胶粘剂的较低临界溶液温度驱动的自凝聚。
为了能够附着到水下表面,贻贝和沙堡蠕虫等水生动物利用凝聚的优势将水性环境中浓缩的富含蛋白质的胶粘剂混合物输送到水下表面。最近,贻贝粘附蛋白Mfp-3s显示出基于凝聚的粘附机制。当前模拟Mfp-3的合成策略通常涉及带相反电荷的聚合物的络合。这种复合凝聚层对pH和盐的变化更敏感,从而将其效用限制在pH和离子强度的狭窄范围内。在这项研究中,通过利用较低临界溶液温度驱动的凝聚,我们开发了贻贝足蛋白启发的,原弹性蛋白样的,可生物吸收的,非离子的,自凝聚聚酯,可在水下输送可光交联的粘合剂,并克服在潮湿或水下环境下粘合的挑战。我们描述了它们的设计原理以及这些非离子型粘合剂的水下粘合性能。与以前报道的凝聚性胶粘剂相比,这些“无电荷”聚酯可以在很宽的pH值(3-12)和离子强度(0-1M NaCl)中凝聚,并且可以迅速(<300 s)粘附在水下的基材上。这项研究引入了模仿Mfp-3s的自凝聚和环境稳定性的智能材料,并证明了在生物粘合剂应用中的潜在潜力,其中可以期望高水含量,盐和pH值的变化。我们描述了它们的设计原理以及这些非离子型粘合剂的水下粘合性能。与以前报道的凝聚性胶粘剂相比,这些“无电荷”聚酯可以在很宽的pH值(3-12)和离子强度(0-1M NaCl)中凝聚,并且可以迅速(<300 s)粘附在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了在生物粘合剂应用中的潜在潜力,其中可以预期水含量,盐和pH值会发生高变化。我们描述了它们的设计原理以及这些非离子型粘合剂的水下粘合性能。与以前报道的凝聚性胶粘剂相比,这些“无电荷”聚酯可以在很宽的pH值(3-12)和离子强度(0-1M NaCl)中凝聚,并且可以迅速(<300 s)粘附在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了有望在高含水量,高盐分和pH值变化的生物粘合剂应用中的潜力。300 s)粘附到浸没在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了在生物粘合剂应用中的潜在潜力,其中可以预期水含量,盐和pH值会发生高变化。300 s)粘附到浸没在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了在生物粘合剂应用中的潜在潜力,其中可以预期水含量,盐和pH值会发生高变化。
更新日期:2020-07-28
中文翻译:
非离子聚酯水下胶粘剂的较低临界溶液温度驱动的自凝聚。
为了能够附着到水下表面,贻贝和沙堡蠕虫等水生动物利用凝聚的优势将水性环境中浓缩的富含蛋白质的胶粘剂混合物输送到水下表面。最近,贻贝粘附蛋白Mfp-3s显示出基于凝聚的粘附机制。当前模拟Mfp-3的合成策略通常涉及带相反电荷的聚合物的络合。这种复合凝聚层对pH和盐的变化更敏感,从而将其效用限制在pH和离子强度的狭窄范围内。在这项研究中,通过利用较低临界溶液温度驱动的凝聚,我们开发了贻贝足蛋白启发的,原弹性蛋白样的,可生物吸收的,非离子的,自凝聚聚酯,可在水下输送可光交联的粘合剂,并克服在潮湿或水下环境下粘合的挑战。我们描述了它们的设计原理以及这些非离子型粘合剂的水下粘合性能。与以前报道的凝聚性胶粘剂相比,这些“无电荷”聚酯可以在很宽的pH值(3-12)和离子强度(0-1M NaCl)中凝聚,并且可以迅速(<300 s)粘附在水下的基材上。这项研究引入了模仿Mfp-3s的自凝聚和环境稳定性的智能材料,并证明了在生物粘合剂应用中的潜在潜力,其中可以期望高水含量,盐和pH值的变化。我们描述了它们的设计原理以及这些非离子型粘合剂的水下粘合性能。与以前报道的凝聚性胶粘剂相比,这些“无电荷”聚酯可以在很宽的pH值(3-12)和离子强度(0-1M NaCl)中凝聚,并且可以迅速(<300 s)粘附在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了在生物粘合剂应用中的潜在潜力,其中可以预期水含量,盐和pH值会发生高变化。我们描述了它们的设计原理以及这些非离子型粘合剂的水下粘合性能。与以前报道的凝聚性胶粘剂相比,这些“无电荷”聚酯可以在很宽的pH值(3-12)和离子强度(0-1M NaCl)中凝聚,并且可以迅速(<300 s)粘附在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了有望在高含水量,高盐分和pH值变化的生物粘合剂应用中的潜力。300 s)粘附到浸没在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了在生物粘合剂应用中的潜在潜力,其中可以预期水含量,盐和pH值会发生高变化。300 s)粘附到浸没在水下的基材上。这项研究引入了模仿Mfp-3的自凝聚和环境稳定性的智能材料,并展示了在生物粘合剂应用中的潜在潜力,其中可以预期水含量,盐和pH值会发生高变化。