Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2020-06-15 , DOI: 10.1016/j.apcatb.2020.119236 Jiayuan Yu , Aizhu Wang , Wanqiang Yu , Xiaoyu Liu , Xiao Li , Hong Liu , Yongyou Hu , Yuen Wu , Weijia Zhou
The irreversible sintering of supported ruthenium (Ru) catalyst in the preparation process has seriously affected its hydrogen evolution reaction (HER) activity and stability. Herein, ultrathin nitrogen-doped molybdenum carbide nanosheets (N-Mo2C NSs) is used as a versatile support to stabilize Ru single atoms (SAs) sites via the anti-Ostwald ripening. Ru SAs are dispersed into the N-Mo2C NSs matrix via the strong bonding between the Ru atoms and Mo2C NSs regulated by N doping. The atomic isolated Ru SAs are confirmed by spherical aberration correction transmission electron microscopy (AC HAADF-STEM) and X-ray absorption fine structure (XAFS) measurements. Ru SAs/N-Mo2C NSs exhibits outstanding HER performance, with a small overpotential of 43 mV at 10 mA/cm2, and robust catalytic stability in 1.0 M KOH. Importantly, Ru SAs/N-Mo2C NSs possesses a higher mass activity of 6.44 A/mgRu than that of 20 wt% Pt/C (0.91 A/mgPt) at the overpotential of 100 mV. Theoretical calculations further reveal that the high HER activity of Ru SAs/N-Mo2C NSs is derived from the synergistically accelerated the dissociation of H2O and the optimized H adsorption strength in Mo-Ru interface. This result provides a new direction for the rational designing monatomic electrocatalysts for HER via support interaction effect.
中文翻译:
通过抗奥斯特瓦尔德熟化,在N掺杂的碳化钼纳米片上定制钌反应位,作为碱性介质中析氢反应的有效电催化剂
负载型钌(Ru)催化剂在制备过程中的不可逆烧结严重影响了其放氢反应(HER)的活性和稳定性。本文中,超薄氮掺杂碳化钼纳米片(N-Mo 2 C NSs)用作通过反奥斯特瓦尔德熟化来稳定Ru单原子(SAs)位点的通用载体。Ru SA通过Ru原子与受N掺杂调节的Mo 2 C NSs之间的牢固结合而分散到N-Mo 2 C NSs基质中。原子分离的Ru SAs通过球面像差校正透射电子显微镜(AC HAADF-STEM)和X射线吸收精细结构(XAFS)测量得到确认。Ru SAs / N-Mo 2C NSs具有出色的HER性能,在10 mA / cm 2时具有43 mV的小过电位,并在1.0 M KOH中具有强大的催化稳定性。重要的是,在100 mV的超电势下,Ru SAs / N-Mo 2 C NSs的质量活性比20 wt%Pt / C(0.91 A / mg Pt)高,具有6.44 A / mg Ru的质量活性。理论计算进一步表明,Ru SAs / N-Mo 2 C NSs的高HER活性源自协同加速H 2 O的离解和在Mo-Ru界面上优化的H吸附强度。该结果为通过载体相互作用效应合理设计HER的单原子电催化剂提供了新的方向。