当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications.
Analytical Chemistry ( IF 6.7 ) Pub Date : 2020-06-11 , DOI: 10.1021/acs.analchem.0c01540
Cameron L Bentley 1 , Minkyung Kang 1 , Patrick R Unwin 1
Affiliation  

Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the “tunable” physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure–electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication—specifically the electrosynthesis of the conductive polymer, polypyrrole—the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity—specifically the electro-oxidation of iodide at polycrystalline platinum—reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic “hot spots”. The work herein further cements SECCM as a premier technique for structure–function–activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.

中文翻译:

非质子溶剂中的扫描电化学细胞显微镜(SECCM):实际考虑和应用。

现代电化学中的许多应用,特别是电合成和能量存储/转换,都利用了非水(例如非质子)电解质介质的“可调”物理化学特性(例如,质子可用性和/或电化学稳定性)。这项工作制定了有关在非质子溶剂电解质介质中使用扫描电化学电池显微镜(SECCM)来解决当代结构电化学活性问题的一般准则。使用简单的外球面Fc 0 / +流程(Fc =二茂铁)作为模型系统,高沸点(低蒸气压)溶剂产生高度稳定且可重现的电化学,而挥发性(低沸点)溶剂需要与合适的低熔点支持电解质混合(例如,离子液体)或高沸点溶剂,以避免在扫描(几分钟到几小时)时间尺度上与盐沉淀/结晶相关的复杂情况。当用于执行微细加工(特别是导电聚合体聚吡咯的电合成)时,优化的SECCM装置可产生与所用移液器探针相当的可重复生产的合成(电沉积)材料阵列。应用SECCM绘制电催化活性图-特别是碘在多晶铂上的电氧化-揭示了独特的(即与结构有关)表面活性模式,具有特定晶体学取向的晶粒,晶界和局部局部取向不良的区域被确定为潜在的电催化“热点”。本文的工作进一步巩固了SECCM作为(电子)材料科学中结构-功能-活性研究的主要技术的优势,并将通过使用非质子溶剂进行合理的分析/设计用于电合成,微细加工,电化学储能/转换,以及超越。晶界和局部表面取向不良的区域被确定为潜在的电催化“热点”。本文的工作进一步巩固了SECCM作为(电子)材料科学中结构-功能-活性研究的主要技术的优势,并将通过使用非质子溶剂进行合理的分析/设计,电合成,微细加工,电化学储能/转换,以及超越。晶界和局部表面取向不良的区域被确定为潜在的电催化“热点”。本文的工作进一步巩固了SECCM作为(电子)材料科学中结构-功能-活性研究的主要技术的优势,并将通过使用非质子溶剂进行合理的分析/设计,电合成,微细加工,电化学储能/转换,以及超越。
更新日期:2020-06-11
down
wechat
bug