当前位置:
X-MOL 学术
›
J. Mater. Chem. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A tunable bifunctional hollow Co3O4/MO3 (M = Mo, W) mixed-metal oxide nanozyme for sensing H2O2 and screening acetylcholinesterase activity and its inhibitor.
Journal of Materials Chemistry B ( IF 6.1 ) Pub Date : 2020-06-10 , DOI: 10.1039/d0tb01337d Xiaodan Zhang 1 , Yuwan Lu 1 , Qiumeng Chen 1 , Yuming Huang 1
Journal of Materials Chemistry B ( IF 6.1 ) Pub Date : 2020-06-10 , DOI: 10.1039/d0tb01337d Xiaodan Zhang 1 , Yuwan Lu 1 , Qiumeng Chen 1 , Yuming Huang 1
Affiliation
A self-templated strategy was adopted to design hollow Co3O4/MO3 (M = Mo, W) mixed-metal oxides via the Mo or W doping of ZIF-67, and subsequent pyrolysis under an atmosphere of air at a low temperature of 450 °C. The hollow Co3O4/MO3 (M = Mo, W) mixed-metal oxides displayed tunable oxidase-like and peroxidase-like activities able to efficiently catalyze the oxidation of TMB to generate a deep blue color in the absence or presence of H2O2. Relative to that of the un-doped Co3O4, the oxidase mimic activity of the Mo-doped Co3O4 increased to 1.3 to 2.1-fold, while its peroxidase mimic activity increased to 7.1 to 19.9-fold, depending on different Mo doping amounts. The oxidase mimic activity of the W-doped Co3O4 increased to 2.1 to 2.3-fold, while its peroxidase mimic activity increased to 4.8 to 5.9-fold, depending on the different W doping amounts. The Mo- and W-doped Co3O4 nanohybrid exhibited both higher O2 and H2O2 activating capability, and their H2O2 activating capacity was superior to the O2 activating capability. Furthermore, the Mo- and W-doped Co3O4 nanohybrids exhibited similar O2 activating abilities, while the Mo-doped one displayed a higher H2O2 activating capability than the W-doped one. The discrepant peroxidase-like nature of Mo- and W-doped Co3O4 nanohybrids is likely attributed to their different catalytic mechanisms. The peroxidase-like activity of Mo-doped Co3O4 is highly related to the ˙OH free radical, while that of W-doped Co3O4 is likely ascribed to the electron transfer between TMB and H2O2. The Km values of Co3O4/MoO3 for TMB and H2O2 were 0.0352 mM and 0.134 mM, which were 3.2- and 1.9-fold lower than that of pure Co3O4, respectively. A Co3O4/MoO3-based colorimetric platform was developed for the determination of H2O2 in the 0.1–200 μM range, with a limit of detection of 0.08 μM (3σ). Based on the thiocholine (TCh) inhibition of the excellent peroxidase-like activity of Co3O4/MoO3 and the TCh generation via acetylcholinesterase (AChE) catalyzed hydrolysis of acetylthiocholine chloride (ATCh), the colorimetric platform was extended to screen AChE activity and its inhibitor.
中文翻译:
一种可调节的双功能空心Co3O4 / MO3(M = Mo,W)混合金属氧化物纳米酶,用于感测H2O2和筛选乙酰胆碱酯酶活性及其抑制剂。
一种自模板策略获得通过设计中空钴3 ö 4 / MO 3(M =钼,钨)的混合金属氧化物通过空气的气氛下在低的Mo或ZIF-67 W的掺杂,和随后的热解温度为450°C。中空的Co 3 O 4 / MO 3(M = Mo,W)混合金属氧化物表现出可调节的氧化酶样和过氧化物酶样活性,能够有效地催化TMB的氧化,从而在不存在或不存在TMB的情况下产生深蓝色。 H 2 O 2。相对于未掺杂的Co 3 O 4,Mo掺杂的Co 3 O的氧化酶模拟活性4增至1.3至2.1倍,而其过氧化物酶模拟活性增至7.1至19.9倍,具体取决于不同的Mo掺杂量。掺杂W的Co 3 O 4的氧化酶模拟活性增加至2.1至2.3倍,而其过氧化物酶模拟活性增加至4.8至5.9倍,这取决于不同的W掺杂量。Mo和W掺杂的Co 3 O 4纳米杂化物同时具有较高的O 2和H 2 O 2活化能力,并且它们的H 2 O 2活化能力优于O 2活化能力。此外,Mo和W掺杂的Co 3 O4种纳米杂化物表现出相似的O 2活化能力,而Mo掺杂的纳米杂化物表现出比W掺杂的更高的H 2 O 2活化能力。Mo和W掺杂的Co 3 O 4纳米杂化物的不同的过氧化物酶样性质可能归因于它们不同的催化机理。Mo掺杂的Co 3 O 4的过氧化物酶活性与˙OH自由基高度相关,而W掺杂的Co 3 O 4的过氧化物酶活性可能归因于TMB和H 2 O 2之间的电子转移。Co 3的K m值TMB和H 2 O 2的O 4 / MoO 3分别为0.0352 mM和0.134 mM,分别比纯Co 3 O 4的低3.2倍和1.9倍。开发了基于Co 3 O 4 / MoO 3的比色平台,用于测定0.1-200μM范围内的H 2 O 2,检出限为0.08μM(3σ)。基于Co的优异的过氧化物酶样活性的硫代胆碱(TCH)抑制3 ö 4 /的MoO 3和TCH代经由 乙酰胆碱酯酶(AChE)催化乙酰硫代胆碱氯化物(ATCh)的水解,比色平台得以扩展以筛选AChE活性及其抑制剂。
更新日期:2020-08-05
中文翻译:
一种可调节的双功能空心Co3O4 / MO3(M = Mo,W)混合金属氧化物纳米酶,用于感测H2O2和筛选乙酰胆碱酯酶活性及其抑制剂。
一种自模板策略获得通过设计中空钴3 ö 4 / MO 3(M =钼,钨)的混合金属氧化物通过空气的气氛下在低的Mo或ZIF-67 W的掺杂,和随后的热解温度为450°C。中空的Co 3 O 4 / MO 3(M = Mo,W)混合金属氧化物表现出可调节的氧化酶样和过氧化物酶样活性,能够有效地催化TMB的氧化,从而在不存在或不存在TMB的情况下产生深蓝色。 H 2 O 2。相对于未掺杂的Co 3 O 4,Mo掺杂的Co 3 O的氧化酶模拟活性4增至1.3至2.1倍,而其过氧化物酶模拟活性增至7.1至19.9倍,具体取决于不同的Mo掺杂量。掺杂W的Co 3 O 4的氧化酶模拟活性增加至2.1至2.3倍,而其过氧化物酶模拟活性增加至4.8至5.9倍,这取决于不同的W掺杂量。Mo和W掺杂的Co 3 O 4纳米杂化物同时具有较高的O 2和H 2 O 2活化能力,并且它们的H 2 O 2活化能力优于O 2活化能力。此外,Mo和W掺杂的Co 3 O4种纳米杂化物表现出相似的O 2活化能力,而Mo掺杂的纳米杂化物表现出比W掺杂的更高的H 2 O 2活化能力。Mo和W掺杂的Co 3 O 4纳米杂化物的不同的过氧化物酶样性质可能归因于它们不同的催化机理。Mo掺杂的Co 3 O 4的过氧化物酶活性与˙OH自由基高度相关,而W掺杂的Co 3 O 4的过氧化物酶活性可能归因于TMB和H 2 O 2之间的电子转移。Co 3的K m值TMB和H 2 O 2的O 4 / MoO 3分别为0.0352 mM和0.134 mM,分别比纯Co 3 O 4的低3.2倍和1.9倍。开发了基于Co 3 O 4 / MoO 3的比色平台,用于测定0.1-200μM范围内的H 2 O 2,检出限为0.08μM(3σ)。基于Co的优异的过氧化物酶样活性的硫代胆碱(TCH)抑制3 ö 4 /的MoO 3和TCH代经由 乙酰胆碱酯酶(AChE)催化乙酰硫代胆碱氯化物(ATCh)的水解,比色平台得以扩展以筛选AChE活性及其抑制剂。