当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graphene Oxide-Tuned MoS2 with an Expanded Interlayer for Efficient Hybrid Capacitive Deionization
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-06-09 , DOI: 10.1021/acssuschemeng.0c01453 Lijun Gao 1 , Qiang Dong 1 , Silin Bai 1 , Sucen Liang 1 , Chao Hu 1 , Jieshan Qiu 2, 3
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-06-09 , DOI: 10.1021/acssuschemeng.0c01453 Lijun Gao 1 , Qiang Dong 1 , Silin Bai 1 , Sucen Liang 1 , Chao Hu 1 , Jieshan Qiu 2, 3
Affiliation
Capacitive deionization (CDI) has shown great promise in desalinating salt water; however, conventional CDI electrode materials suffer from low specific salt capacity and charge efficiency owing to the co-ion expulsion effect. Herein, using expanded MoS2 nanosheets supported by reduced graphene oxide (MoS2/rGO) as the intercalation electrode, we develop a hybrid CDI system that shows a battery-like behavior and can reversibly store cations through the intercalation mechanism. The incorporation of rGO in the composite not only affords a conductive support and ensures fast electron transfer but also, more importantly, widens the MoS2 interlayer spacing from 0.62 to 0.73 nm. The expanded MoS2 interlayer facilitates the diffusion of cations and decreases the internal strain during the intercalation/de-intercalation process. Also, it endows MoS2/rGO with more accessible sites and space for cations in the electrolyte. Benefiting from the desirable structure features, the hybrid CDI system delivers a remarkable specific salt capacity of 34.20 mg g–1 and a charge efficiency as high as 97% in 300 mg L–1 sodium chloride aqueous solution. The MoS2/rGO involved in the CDI system for the adsorption of other metal ions is also verified, indicating its potential applications for the removal of various metal ions in brackish water and seawater.
中文翻译:
氧化石墨烯修饰的MoS 2,具有扩展的中间层,可实现高效混合电容去离子
电容去离子(CDI)在淡化盐水方面显示出了广阔的前景。然而,常规的CDI电极材料由于离子排斥作用而具有较低的比盐容量和充电效率。在这里,我们使用由还原的氧化石墨烯(MoS 2 / rGO)支撑的扩展MoS 2纳米片作为插层电极,我们开发了一种混合CDI系统,该系统显示出类似电池的行为,并且可以通过插层机制可逆地存储阳离子。rGO在复合材料中的结合不仅提供了导电支持,并确保了快速的电子转移,而且更重要的是,将MoS 2的层间间距从0.62 nm扩大到0.73 nm。扩展的MoS 2夹层有利于阳离子的扩散,并减少了插层/去插层过程中的内部应变。而且,它使MoS 2 / rGO具有更多可及的位置和电解质中阳离子的空间。得益于理想的结构特征,混合CDI系统在300 mg L –1氯化钠水溶液中具有34.20 mg g –1的显着比盐容量和高达97%的充电效率。还验证了参与CDI系统吸附其他金属离子的MoS 2 / rGO,表明其在去除咸水和海水中各种金属离子方面的潜在应用。
更新日期:2020-07-06
中文翻译:
氧化石墨烯修饰的MoS 2,具有扩展的中间层,可实现高效混合电容去离子
电容去离子(CDI)在淡化盐水方面显示出了广阔的前景。然而,常规的CDI电极材料由于离子排斥作用而具有较低的比盐容量和充电效率。在这里,我们使用由还原的氧化石墨烯(MoS 2 / rGO)支撑的扩展MoS 2纳米片作为插层电极,我们开发了一种混合CDI系统,该系统显示出类似电池的行为,并且可以通过插层机制可逆地存储阳离子。rGO在复合材料中的结合不仅提供了导电支持,并确保了快速的电子转移,而且更重要的是,将MoS 2的层间间距从0.62 nm扩大到0.73 nm。扩展的MoS 2夹层有利于阳离子的扩散,并减少了插层/去插层过程中的内部应变。而且,它使MoS 2 / rGO具有更多可及的位置和电解质中阳离子的空间。得益于理想的结构特征,混合CDI系统在300 mg L –1氯化钠水溶液中具有34.20 mg g –1的显着比盐容量和高达97%的充电效率。还验证了参与CDI系统吸附其他金属离子的MoS 2 / rGO,表明其在去除咸水和海水中各种金属离子方面的潜在应用。