当前位置: X-MOL 学术J. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrothermal synthesis of Ni-based metal organic frameworks/graphene oxide composites as supercapacitor electrode materials
Journal of Materials Research ( IF 2.7 ) Pub Date : 2020-05-04 , DOI: 10.1557/jmr.2020.93
Fan He , Nana Yang , Kanshe Li , Xiaoqin Wang , Shaoling Cong , Linsen Zhang , Shanxin Xiong , Anning Zhou

As electrode materials, metal-organic frameworks always have low electrical conductivity and poor structural stability, which limits its applications in electrochemical fields. Here, Ni-BPDC/GO composites are synthesized using graphene oxide (GO) as a substrate and 4,4′-biphenyldicarboxylic acid (BPDC) as an organic ligand via a hydrothermal approach. The growth mechanism of the Ni-BPDC and Ni-BPDC/GO composites is proposed. In the composites, highly dispersed Ni-BPDC macro-nanostrips are supported on the GO surface in parallel. The presence of GO does not affect the growth and crystalline structure of Ni-BPDC. Compared with the Ni-BPDC, Ni-BPDC/GO composites exhibit higher specific capacitance, rate capability, and operating current density through lowering intrinsic resistance, charge-transfer resistance, and ion diffusion impedance. Moreover, the assembled Ni-BPDC/GO-3//reduced graphene oxide (rGO) asymmetric supercapacitor has large specific capacitance, good cycling stability, and high energy density (16.5 W h/kg at 250 W/kg). Hence, Ni-BPDC/GO composites are a potential electrode material for supercapacitors.



中文翻译:

水热法合成镍基金属有机骨架/氧化石墨烯复合材料作为超级电容器电极材料

作为电极材料,金属有机骨架始终具有较低的电导率和较差的结构稳定性,这限制了其在电化学领域的应用。在此,Ni-BPDC / GO复合材料是通过水热法,以氧化石墨烯(GO)为底物和4,4'-联苯二甲酸(BPDC)作为有机配体来合成的。提出了Ni-BPDC和Ni-BPDC / GO复合材料的生长机理。在复合材料中,高度分散的Ni-BPDC宏观纳米带平行支撑在GO表面上。GO的存在不影响Ni-BPDC的生长和晶体结构。与Ni-BPDC相比,Ni-BPDC / GO复合材料通过降低固有电阻,电荷转移电阻和离子扩散阻抗,具有更高的比电容,倍率能力和工作电流密度。此外,组装好的Ni-BPDC / GO-3 //氧化石墨烯(rGO)不对称超级电容器具有大的比电容,良好的循环稳定性和高能量密度(250 W / kg时为16.5 W h / kg)。因此,Ni-BPDC / GO复合材料是超级电容器的潜在电极材料。

更新日期:2020-05-04
down
wechat
bug