当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sulfate Reduction-Mediated Syntrophic Microbiomes Accelerated Waste-Activated Sludge Fermentation on the Basis of SO4•– Oxidation and Eliminated Superfluous Sulfate
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-06-04 , DOI: 10.1021/acssuschemeng.0c01081 Aijuan Zhou 1, 2 , Yaoli Wei 1 , Yaxin Fan 1 , Alimzhanova Shyryn 1 , Sufang Wang 1 , Wenzong Liu 3 , Jin Yuan 1 , Xiuping Yue 1, 4
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-06-04 , DOI: 10.1021/acssuschemeng.0c01081 Aijuan Zhou 1, 2 , Yaoli Wei 1 , Yaxin Fan 1 , Alimzhanova Shyryn 1 , Sufang Wang 1 , Wenzong Liu 3 , Jin Yuan 1 , Xiuping Yue 1, 4
Affiliation
Sulfate radical (SO4•–) based advanced oxidation (E° = 2.43 VNHE), as a new research hotspot, has been proven to be effective for waste-activated sludge (WAS) disintegration prior to anaerobic fermentation; however, it is still limited by the generated superfluous sulfate in practice. This study explores a novel strategy, i.e., coupling persulfate (PDS) oxidation with sulfate reducing bacteria (SRB) mediated syntrophic microbiomes, to enhance WAS fermentation, especially for the acetogenesis step. Experimental results showed that coupling treatment clearly enhanced short-chain fatty acids (SCFAs) production (393.7 ± 28.0 mg of chemical oxygen demand (COD)/g of volatile suspended solids (VSS) with 63.2 ± 0.7% acetic acid (HAc)), which increased 43.0 mg of COD/g of VSS (24%) over the sole PDS group. PDS oxidation clearly enhanced WAS disintegration and sulfate radical (SO4•–) was the key radical that played important role by radical scavenging and electron paramagnetic resonance analysis. Thermodynamic analysis showed the introduction of SRB consortia was more beneficial for acetate conversion during the acetogenesis by having a much lower ΔG0. The mechanism of coupling treatment was supported as well by the distribution of functional microbiomes, with fermenters predominating (36.1%), followed by 2.4% of SRB and 1.3% of hydrogen-producing acetogen (HPA). The possible synergetic relationships among fermenters, homoacidogen, HPA, and SRB were revealed by molecular ecological network analysis. This study provides a scientific basis for the potentially practical technology for value-added biometabolite recovery from SO4•–-based mixed-culture WAS fermentation.
中文翻译:
硫酸盐还原介导的微生物群,基于SO 4 •-氧化和消除了多余的硫酸盐促进了废物活化污泥的发酵
基于硫酸根(SO 4 •–)的高级氧化(E °= 2.43 V NHE),作为一个新的研究热点,已被证明对于厌氧发酵之前的废物活化污泥(WAS)分解是有效的;然而,实际上它仍然受到生成的多余硫酸盐的限制。这项研究探索了一种新的策略,即,将过硫酸盐(PDS)氧化与硫酸盐还原细菌(SRB)介导的同养微生物组偶联,以增强WAS发酵,特别是在产乙酸步骤中。实验结果表明,偶联处理明显提高了短链脂肪酸(SCFA)的产量(393.7±28.0 mg化学需氧量(COD)/ g挥发性悬浮固体(VSS)与63.2±0.7%乙酸(HAc)),与单独的PDS组相比,它增加了43.0 mg COD / g VSS(24%)。PDS氧化明显增强了WAS的分解和硫酸根(SO 4 •–)是通过自由基清除和电子顺磁共振分析发挥重要作用的关键自由基。热力学分析表明,SRB团的引入由于具有较低的ΔG 0,因此在乙酸生成过程中对乙酸盐转化更为有利。功能微生物组的分布也支持偶联处理的机制,其中发酵罐占主导地位(36.1%),其次是SRB(2.4%)和产氢的乙酸原(HPA)1.3%。通过分子生态网络分析揭示了发酵罐,同酸原,HPA和SRB之间可能的协同关系。该研究从SO提供了科学依据的潜在实用技术增值biometabolite恢复4 • -混合培养的WAS发酵。
更新日期:2020-06-29
中文翻译:
硫酸盐还原介导的微生物群,基于SO 4 •-氧化和消除了多余的硫酸盐促进了废物活化污泥的发酵
基于硫酸根(SO 4 •–)的高级氧化(E °= 2.43 V NHE),作为一个新的研究热点,已被证明对于厌氧发酵之前的废物活化污泥(WAS)分解是有效的;然而,实际上它仍然受到生成的多余硫酸盐的限制。这项研究探索了一种新的策略,即,将过硫酸盐(PDS)氧化与硫酸盐还原细菌(SRB)介导的同养微生物组偶联,以增强WAS发酵,特别是在产乙酸步骤中。实验结果表明,偶联处理明显提高了短链脂肪酸(SCFA)的产量(393.7±28.0 mg化学需氧量(COD)/ g挥发性悬浮固体(VSS)与63.2±0.7%乙酸(HAc)),与单独的PDS组相比,它增加了43.0 mg COD / g VSS(24%)。PDS氧化明显增强了WAS的分解和硫酸根(SO 4 •–)是通过自由基清除和电子顺磁共振分析发挥重要作用的关键自由基。热力学分析表明,SRB团的引入由于具有较低的ΔG 0,因此在乙酸生成过程中对乙酸盐转化更为有利。功能微生物组的分布也支持偶联处理的机制,其中发酵罐占主导地位(36.1%),其次是SRB(2.4%)和产氢的乙酸原(HPA)1.3%。通过分子生态网络分析揭示了发酵罐,同酸原,HPA和SRB之间可能的协同关系。该研究从SO提供了科学依据的潜在实用技术增值biometabolite恢复4 • -混合培养的WAS发酵。