当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Plasma-Based N2 Fixation into NOx: Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-06-04 , DOI: 10.1021/acssuschemeng.0c01815 Elise Vervloessem 1 , Maryam Aghaei 1 , Fatme Jardali 1 , Neda Hafezkhiabani 1 , Annemie Bogaerts 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-06-04 , DOI: 10.1021/acssuschemeng.0c01815 Elise Vervloessem 1 , Maryam Aghaei 1 , Fatme Jardali 1 , Neda Hafezkhiabani 1 , Annemie Bogaerts 1
Affiliation
Plasma technology provides a sustainable, fossil-free method for N2 fixation, i.e., the conversion of inert atmospheric N2 into valuable substances, such as NOx or ammonia. In this work, we present a novel gliding arc plasmatron at atmospheric pressure for NOx production at different N2/O2 gas feed ratios, offering a promising NOx yield of 1.5% with an energy cost of 3.6 MJ/mol NOx produced. To explain the underlying mechanisms, we present a chemical kinetics model, validated by experiments, which provides insight into the NOx formation pathways and into the ambivalent role of the vibrational kinetics. This allows us to pinpoint the factors limiting the yield and energy cost, which can help to further improve the process.
中文翻译:
基于等离子体的N 2固定到NO x中:滑动等离子等离子体中从建模到最佳产量和能源成本的见解
等离子体技术为N 2的固定提供了一种可持续的,无化石的方法,即将惰性大气中的N 2转化为有价值的物质,例如NO x或氨。在这项工作中,我们提出了一种新型的大气压滑弧等离子加速器,用于在不同的N 2 / O 2气体进料比下生产NO x,提供了有希望的1.5%NO x产率和3.6 MJ / mol NO x产生的能源成本。为了解释潜在的机理,我们提供了一个化学动力学模型,该模型已通过实验验证,可提供对NO x的深入了解形成途径并进入振动动力学的矛盾作用。这使我们能够查明限制产量和能源成本的因素,从而有助于进一步改善工艺。
更新日期:2020-07-06
中文翻译:
基于等离子体的N 2固定到NO x中:滑动等离子等离子体中从建模到最佳产量和能源成本的见解
等离子体技术为N 2的固定提供了一种可持续的,无化石的方法,即将惰性大气中的N 2转化为有价值的物质,例如NO x或氨。在这项工作中,我们提出了一种新型的大气压滑弧等离子加速器,用于在不同的N 2 / O 2气体进料比下生产NO x,提供了有希望的1.5%NO x产率和3.6 MJ / mol NO x产生的能源成本。为了解释潜在的机理,我们提供了一个化学动力学模型,该模型已通过实验验证,可提供对NO x的深入了解形成途径并进入振动动力学的矛盾作用。这使我们能够查明限制产量和能源成本的因素,从而有助于进一步改善工艺。