当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced Energy Storage Density of Lead Lutetium Niobate Crystals by Electric Field-Induced Secondary Phase Transition via Na/La Codoping.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-06-04 , DOI: 10.1021/acsami.0c06298 Xiaoming Yang 1, 2 , Fangping Zhuo 3 , Zujian Wang 1, 2 , Lingfei Lv 1, 2 , Ying Liu 1, 2 , Chao He 1, 2 , Xifa Long 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-06-04 , DOI: 10.1021/acsami.0c06298 Xiaoming Yang 1, 2 , Fangping Zhuo 3 , Zujian Wang 1, 2 , Lingfei Lv 1, 2 , Ying Liu 1, 2 , Chao He 1, 2 , Xifa Long 1, 2
Affiliation
As emerging materials for capacitor applications, antiferroelectric (AFE) materials possess high energy storage density. AFE single crystals are conducive to studying the physical mechanism of AFE response. However, the preparation of AFE single crystals is a huge and long-standing challenge. Herein, we report the effect of Na/La codoping on the energy storage properties and phase transition of Pb(Lu1/2Nb1/2)O3 (PLN) AFE single crystals. An enhanced recoverable energy storage density of 4.81 J/cm3 with a high energy efficiency of 82.36% is obtained, which is much larger than that of the PbZrO3- and PLN-based AFE crystals. Two superlattice reflections, which stem from the A-site Pb2+ ions and the ordered B-site ions, are identified by X-ray diffraction and selected-area electron diffraction. The domain structures demonstrated a high temperature stability of the AFE phase. A secondary ferroelectric phase transition is induced after codoping, resulting in a sharp improvement of polarization (12.5 μC/cm2), which contributes to the enormous enhancement of energy storage density. This multiphase transition is explained using the modified Ginzburg–Landau–Devonshire phenomenology.
中文翻译:
电场诱导的Na / La共掺杂二次相变增强了铌酸铅Lead晶体的储能密度。
作为用于电容器的新兴材料,反铁电(AFE)材料具有很高的储能密度。AFE单晶有利于研究AFE反应的物理机理。然而,制备AFE单晶是一个巨大而长期的挑战。本文中,我们报道了Na / La共掺杂对Pb(Lu 1/2 Nb 1/2)O 3(PLN)AFE单晶的储能性能和相变的影响。获得了4.81 J / cm 3的增强的可回收能量存储密度,具有82.36%的高能量效率,该能量密度远高于PbZrO 3-和PLN基AFE晶体。来自A位置Pb 2+的两个超晶格反射离子和有序的B位离子通过X射线衍射和选择区域电子衍射鉴定。畴结构显示出AFE相的高温稳定性。共掺杂后会引发二次铁电相变,从而导致极化(12.5μC/ cm 2)的急剧改善,从而极大地提高了储能密度。使用改良的Ginzburg–Landau–Devonshire现象学解释了这种多相转变。
更新日期:2020-06-24
中文翻译:
电场诱导的Na / La共掺杂二次相变增强了铌酸铅Lead晶体的储能密度。
作为用于电容器的新兴材料,反铁电(AFE)材料具有很高的储能密度。AFE单晶有利于研究AFE反应的物理机理。然而,制备AFE单晶是一个巨大而长期的挑战。本文中,我们报道了Na / La共掺杂对Pb(Lu 1/2 Nb 1/2)O 3(PLN)AFE单晶的储能性能和相变的影响。获得了4.81 J / cm 3的增强的可回收能量存储密度,具有82.36%的高能量效率,该能量密度远高于PbZrO 3-和PLN基AFE晶体。来自A位置Pb 2+的两个超晶格反射离子和有序的B位离子通过X射线衍射和选择区域电子衍射鉴定。畴结构显示出AFE相的高温稳定性。共掺杂后会引发二次铁电相变,从而导致极化(12.5μC/ cm 2)的急剧改善,从而极大地提高了储能密度。使用改良的Ginzburg–Landau–Devonshire现象学解释了这种多相转变。