当前位置:
X-MOL 学术
›
Energy Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metal‐Chelated Biomimetic Polyelectrolyte as a Powerful Binder for High‐Performance Micron Silicon Anodes
Energy Technology ( IF 3.6 ) Pub Date : 2020-05-29 , DOI: 10.1002/ente.202000278 Xiang Guan 1 , Yuanxing Yong 1, 2 , Qingping Wu 1, 2 , Xiaowan Zhang 1 , Xuhong Guo 1 , Chilin Li 2 , Jun Xu 1
Energy Technology ( IF 3.6 ) Pub Date : 2020-05-29 , DOI: 10.1002/ente.202000278 Xiang Guan 1 , Yuanxing Yong 1, 2 , Qingping Wu 1, 2 , Xiaowan Zhang 1 , Xuhong Guo 1 , Chilin Li 2 , Jun Xu 1
Affiliation
High‐capacity silicon anodes have attracted tremendous interest for next‐generation lithium‐ion batteries (LIBs). However, its further application is limited by the large volume expansion during cycling. Designing nanostructured silicon is an effective strategy to acquire high‐performance anodes, but it will face problems of high cost and poor coulombic efficiency. As a comparison, surface modification of micron silicon is more economically viable. Herein, a novel route is proposed to synthesize metal‐chelated biomimetic polyelectrolyte as a powerful binder, which wraps micron silicon particles in a thin Fe3+–polydopamine (PDA) layer with a thickness of 2–5 nm. The introduced Fe3+ can form powerful metal‐chelated bonds with PDA at appropriate hydrothermal temperature (160 °C). As a result, the mechanical strength of the protective layer is enhanced and the electrochemical activity of micron silicon is improved. Meanwhile, the 3D crosslinking structure formed through the esterification between the elastic polymer layer and polyacrylic acid (PAA) further guarantees the structural stability of anodes. Batteries using Si@Fe3+–PDA–160/PAA anode exhibit excellent cycling performance with stable capacity of 2000 mAh g−1 over 200 cycles at 0.5 C and high capacity retention ratio of 80% after 100 cycles at 0.1 C.
中文翻译:
金属螯合仿生聚电解质作为高性能微米级硅阳极的强大粘合剂
高容量硅阳极引起了下一代锂离子电池(LIB)的巨大兴趣。但是,其进一步的应用受到循环过程中大体积膨胀的限制。设计纳米结构硅是获得高性能阳极的有效策略,但它将面临高成本和库仑效率差的问题。作为比较,微米硅的表面改性在经济上是可行的。在此,提出了一条新的路线来合成金属螯合的仿生聚电解质作为一种强大的粘合剂,它将微米级的硅颗粒包裹在厚度为2–5 nm的Fe 3+-聚多巴胺(PDA)薄层中。引入的Fe 3+可以在适当的水热温度(160°C)下与PDA形成强大的金属螯合键。结果,增强了保护层的机械强度并且提高了微米硅的电化学活性。同时,通过在弹性聚合物层和聚丙烯酸(PAA)之间的酯化形成的3D交联结构进一步保证了阳极的结构稳定性。使用Si @ Fe 3+ –PDA–160 / PAA阳极的电池表现出出色的循环性能,在0.5 C的200个循环中具有2000 mAh g -1的稳定容量,在0.1 C的100个循环后具有80%的高容量保持率。
更新日期:2020-07-02
中文翻译:
金属螯合仿生聚电解质作为高性能微米级硅阳极的强大粘合剂
高容量硅阳极引起了下一代锂离子电池(LIB)的巨大兴趣。但是,其进一步的应用受到循环过程中大体积膨胀的限制。设计纳米结构硅是获得高性能阳极的有效策略,但它将面临高成本和库仑效率差的问题。作为比较,微米硅的表面改性在经济上是可行的。在此,提出了一条新的路线来合成金属螯合的仿生聚电解质作为一种强大的粘合剂,它将微米级的硅颗粒包裹在厚度为2–5 nm的Fe 3+-聚多巴胺(PDA)薄层中。引入的Fe 3+可以在适当的水热温度(160°C)下与PDA形成强大的金属螯合键。结果,增强了保护层的机械强度并且提高了微米硅的电化学活性。同时,通过在弹性聚合物层和聚丙烯酸(PAA)之间的酯化形成的3D交联结构进一步保证了阳极的结构稳定性。使用Si @ Fe 3+ –PDA–160 / PAA阳极的电池表现出出色的循环性能,在0.5 C的200个循环中具有2000 mAh g -1的稳定容量,在0.1 C的100个循环后具有80%的高容量保持率。