当前位置:
X-MOL 学术
›
Biomacromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications.
Biomacromolecules ( IF 5.5 ) Pub Date : 2020-05-27 , DOI: 10.1021/acs.biomac.0c00456 Shantanu P Nikam 1 , Peiru Chen 1 , Karissa Nettleton 1 , Yen-Hao Hsu 1 , Matthew L Becker 2
Biomacromolecules ( IF 5.5 ) Pub Date : 2020-05-27 , DOI: 10.1021/acs.biomac.0c00456 Shantanu P Nikam 1 , Peiru Chen 1 , Karissa Nettleton 1 , Yen-Hao Hsu 1 , Matthew L Becker 2
Affiliation
Immobilizing zwitterionic molecules on material surfaces has been a promising strategy for creating antifouling surfaces. Herein, we show the ability to surface derivatize an allyl-ether-functionalized thermoplastic polyurethane (TPU) with a zwitterionic thiol in a radically induced thiol–ene reaction. The thermoplastic polyurethane was synthesized to have an allyl-ether side functionality using a modified chain extender molecule. The zwitterion surface functionalization was achieved via thiol–ene reaction in aqueous conditions. The presence of chemically tethered zwitterion moieties on the TPU surface was confirmed using X-ray photoelectron spectroscopy (XPS). Protein adsorption experiments via quartz crystal microbalance (QCM) show reduced fibrinogen attachment for the zwitterion-derivatized TPU when compared to its nonfunctionalized controls. The Zwitterion-TPU also showed a log scale reduction in bacterial adherence. For Pseudomonas aeruginosa and Staphylococcus epidermidis, the Zwitterion-TPU resulted in around a 40 and 50% lower bacterial biomass accumulation, respectively, over the time scale of the experiment. The fibroblast cell viability of TPU remained unaffected by functionalization with zwitterion thiol. The results from our model experiments suggest that a zwitterion-modified TPU is a promising candidate for antifouling catheters.
中文翻译:
两性离子表面功能化热塑性聚氨酯,用于防污导管应用。
将两性离子分子固定在材料表面上已成为创建防污表面的一种有前途的策略。在这里,我们展示了在自由基诱导的硫醇-烯反应中,将两性离子硫醇与烯丙基醚官能化的热塑性聚氨酯(TPU)进行表面衍生的能力。使用改性的扩链剂分子合成热塑性聚氨酯以具有烯丙基醚侧官能团。两性离子表面官能化是通过在水性条件下的硫醇-烯反应实现的。使用X射线光电子能谱(XPS)确认TPU表面存在化学束缚的两性离子部分。通过蛋白质吸附实验与未官能化的对照品相比,两性离子衍生的TPU的石英晶体微量天平(QCM)显示纤维蛋白原附着减少。两性离子-TPU还显示细菌粘附的对数刻度降低。对于铜绿假单胞菌和表皮葡萄球菌,两性离子-TPU在实验时间内分别降低了约40%和50%的细菌生物量积累。TPU的成纤维细胞活力不受两性离子硫醇功能化的影响。我们的模型实验结果表明,两性离子修饰的TPU是防污导管的有希望的候选者。
更新日期:2020-07-13
中文翻译:
两性离子表面功能化热塑性聚氨酯,用于防污导管应用。
将两性离子分子固定在材料表面上已成为创建防污表面的一种有前途的策略。在这里,我们展示了在自由基诱导的硫醇-烯反应中,将两性离子硫醇与烯丙基醚官能化的热塑性聚氨酯(TPU)进行表面衍生的能力。使用改性的扩链剂分子合成热塑性聚氨酯以具有烯丙基醚侧官能团。两性离子表面官能化是通过在水性条件下的硫醇-烯反应实现的。使用X射线光电子能谱(XPS)确认TPU表面存在化学束缚的两性离子部分。通过蛋白质吸附实验与未官能化的对照品相比,两性离子衍生的TPU的石英晶体微量天平(QCM)显示纤维蛋白原附着减少。两性离子-TPU还显示细菌粘附的对数刻度降低。对于铜绿假单胞菌和表皮葡萄球菌,两性离子-TPU在实验时间内分别降低了约40%和50%的细菌生物量积累。TPU的成纤维细胞活力不受两性离子硫醇功能化的影响。我们的模型实验结果表明,两性离子修饰的TPU是防污导管的有希望的候选者。