当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quasi-Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-05-25 , DOI: 10.1002/adma.201907041
Zahra Hemmat 1 , John Cavin 2 , Alireza Ahmadiparidari 1 , Alexander Ruckel 3 , Sina Rastegar 1 , Saurabh N Misal 1 , Leily Majidi 1 , Khagesh Kumar 4 , Shuxi Wang 3 , Jinglong Guo 3 , Radwa Dawood 3 , Francisco Lagunas 3 , Prakash Parajuli 3 , Anh Tuan Ngo 5 , Larry A Curtiss 5 , Sung Beom Cho 6 , Jordi Cabana 4 , Robert F Klie 3 , Rohan Mishra 6, 7 , Amin Salehi-Khojin 1
Affiliation  

Transition metal dichalcogenide (TMDCs) alloys could have a wide range of physical and chemical properties, ranging from charge density waves to superconductivity and electrochemical activities. While many exciting behaviors of unary TMDCs have been demonstrated, the vast compositional space of TMDC alloys has remained largely unexplored due to the lack of understanding regarding their stability when accommodating different cations or chalcogens in a single‐phase. Here, a theory‐guided synthesis approach is reported to achieve unexplored quasi‐binary TMDC alloys through computationally predicted stability maps. Equilibrium temperature–composition phase diagrams using first‐principles calculations are generated to identify the stability of 25 quasi‐binary TMDC alloys, including some involving non‐isovalent cations and are verified experimentally through the synthesis of a subset of 12 predicted alloys using a scalable chemical vapor transport method. It is demonstrated that the synthesized alloys can be exfoliated into 2D structures, and some of them exhibit: i) outstanding thermal stability tested up to 1230 K, ii) exceptionally high electrochemical activity for the CO2 reduction reaction in a kinetically limited regime with near zero overpotential for CO formation, iii) excellent energy efficiency in a high rate Li–air battery, and iv) high break‐down current density for interconnect applications. This framework can be extended to accelerate the discovery of other TMDC alloys for various applications.

中文翻译:

准二元过渡金属二硫属化物合金:热力学稳定性预测,可扩展合成及其应用。

过渡金属二硫化碳(TMDCs)合金可能具有广泛的物理和化学性质,范围从电荷密度波到超导性和电化学活性。虽然已经证明了一元TMDC的许多令人兴奋的行为,但由于在单相中容纳不同的阳离子或硫族元素时,对它们的稳定性缺乏了解,因此TMDC合金的巨大组成空间仍未得到充分开发。在这里,据报道有一种理论指导的合成方法,可以通过计算预测的稳定性图来获得未探索的准二元TMDC合金。使用第一性原理计算得出的平衡温度-组成相图可识别25种准二元TMDC合金的稳定性,其中包括一些涉及非等价阳离子的化合物,并使用可扩展的化学气相传输方法通过合成12种预测合金的子集进行了实验验证。结果表明,合成的合金可以剥落成二维结构,其中一些具有:i)在高达1230 K的高温下具有出色的热稳定性,ii)对CO的电化学活性极高2在动力学受限的状态下发生还原反应,形成CO的过电势几乎为零,iii)高倍率锂空气电池具有出色的能源效率,并且iv)用于互连应用的高击穿电流密度。该框架可以扩展,以加快发现适用于各种应用的其他TMDC合金。
更新日期:2020-07-01
down
wechat
bug