当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid‐State Electrolytes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-05-19 , DOI: 10.1002/aenm.202000779 Shulian Li 1 , Weifeng Zhang 1 , Jiafen Zheng 1 , Mengyuan Lv 1 , Huiyu Song 1 , Li Du 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-05-19 , DOI: 10.1002/aenm.202000779 Shulian Li 1 , Weifeng Zhang 1 , Jiafen Zheng 1 , Mengyuan Lv 1 , Huiyu Song 1 , Li Du 1
Affiliation
Lithium–sulfur (Li–S) batteries are one of the most promising next‐generation energy storage systems due to their ultrahigh theoretical specific capacity. However, their practical applications are seriously hindered by some inevitable disadvantages such as the insulative nature of sulfur and Li2S, volume expansion of the cathode, the shuttle effect of polysulfides, and the growth of lithium dendrites on the anode. Of these, the polysulfide shuttle effect is one of the most critical issues causing the irreversible loss of active materials and rapid capacity degradation of batteries. Herein, modified separators with functional coatings inhibiting the migration of polysulfides are enumerated based on three effects toward polysulfides: the adsorption effect, separation effect, and catalytic effect. To solve the shuttle effect problem, researchers have replaced liquid electrolytes with solid‐state electrolytes. In this review, solid‐state electrolytes for lithium–sulfur batteries are grouped into three categories: inorganic solid electrolytes, solid polymer electrolytes, and composite solid electrolytes. Challenges and perspectives regarding the development of an optimized strategy to inhibit the polysulfide shuttle for enhancing cycle stability in lithium–sulfur batteries are also proposed.
中文翻译:
Li-S电池中多硫化物梭的抑制:改进的隔板和固态电解质
锂硫(Li–S)电池由于具有极高的理论比容量,因此是最有希望的下一代储能系统之一。然而,它们的实际应用受到诸如硫和Li 2的绝缘性质等不可避免的缺点的严重阻碍。S,阴极的体积膨胀,多硫化物的穿梭效应,以及阳极上锂树枝状晶体的生长。其中,多硫化物的穿梭效应是导致活性材料不可逆转损失和电池容量快速下降的最关键问题之一。在此,基于对多硫化物的三种作用:吸附作用,分离作用和催化作用,列举了具有功能涂层的改性隔板,所述功能性涂层抑制多硫化物的迁移。为了解决穿梭效应问题,研究人员已用固态电解质代替了液态电解质。在这篇综述中,用于锂硫电池的固态电解质可分为三类:无机固态电解质,固态聚合物电解质和复合固态电解质。
更新日期:2020-05-19
中文翻译:
Li-S电池中多硫化物梭的抑制:改进的隔板和固态电解质
锂硫(Li–S)电池由于具有极高的理论比容量,因此是最有希望的下一代储能系统之一。然而,它们的实际应用受到诸如硫和Li 2的绝缘性质等不可避免的缺点的严重阻碍。S,阴极的体积膨胀,多硫化物的穿梭效应,以及阳极上锂树枝状晶体的生长。其中,多硫化物的穿梭效应是导致活性材料不可逆转损失和电池容量快速下降的最关键问题之一。在此,基于对多硫化物的三种作用:吸附作用,分离作用和催化作用,列举了具有功能涂层的改性隔板,所述功能性涂层抑制多硫化物的迁移。为了解决穿梭效应问题,研究人员已用固态电解质代替了液态电解质。在这篇综述中,用于锂硫电池的固态电解质可分为三类:无机固态电解质,固态聚合物电解质和复合固态电解质。