当前位置:
X-MOL 学术
›
J. Alloys Compd.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis of La2Ti2O7 flexible self-supporting film and its application in flexible energy storage device
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jallcom.2020.155581 Yi Cao , Peiyuan Tang , Yue Han , Wenfeng Qiu
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jallcom.2020.155581 Yi Cao , Peiyuan Tang , Yue Han , Wenfeng Qiu
Abstract In this study, we succeed to synthesize the lanthanum titanate (LTO) flexible self-supporting film, and the flexible electrode based on the self-supporting film as active material were also provided to verify the electrochemical energy storage performance. The self-supporting film with both excellent flexibility and outstanding crystalline structure has been prepared by electrospinning combined with calcination method. To further optimize calcination processing, the microstructure, morphological characteristics and lattice structure of the self-supporting films can be explored by using SEM、TG、XRD and FT-IR. What’s more, the electrochemical properties of the flexible electrode prepared by LTO self-supporting film have been determined in various solutions. Comparing with the other aqueous, the highest areal capacitance of 806.2 mF cm−2 at 2 mA cm−2 was got form 1 M Na2SO4 aqueous electrolyte. Moreover, the symmetrical LTO//LTO flexible device fabricated by two LTO electrodes has a maximum areal capacitance of 149.2 mF cm−2 at a current density of 2 mA cm−2 with a high cell voltage of 2.1 V. As the result of that, this device exhibits a high energy density of 91.4 μWh·cm−2 at a low power density of 2.1 mW cm−2 with outstanding cycling life and excellent bending stability. Therefore, the LTO self-supporting film can be considered as a prospective material for wearable energy storage device.
中文翻译:
La2Ti2O7柔性自支撑薄膜的合成及其在柔性储能器件中的应用
摘要 本研究成功合成了钛酸镧(LTO)柔性自支撑薄膜,并提供了以自支撑薄膜为活性材料的柔性电极,以验证其电化学储能性能。采用静电纺丝结合煅烧法制备了兼具优异柔韧性和优异晶体结构的自支撑薄膜。为了进一步优化煅烧工艺,可以利用SEM、TG、XRD和FT-IR等手段探索自支撑薄膜的微观结构、形貌特征和晶格结构。此外,LTO自支撑薄膜制备的柔性电极的电化学性能已在各种溶液中得到测定。与其他水相比较,806的面积电容最高。从 1 M Na2SO4 水性电解质中得到 2 mA cm-2 下的 2 mF cm-2。此外,由两个 LTO 电极制造的对称 LTO//LTO 柔性器件在 2 mA cm-2 的电流密度和 2.1 V 的高电池电压下具有 149.2 mF cm-2 的最大面积电容。 ,该器件在 2.1 mW cm-2 的低功率密度下表现出 91.4 μWh·cm-2 的高能量密度,具有出色的循环寿命和出色的弯曲稳定性。因此,LTO自支撑薄膜可以被认为是可穿戴储能设备的潜在材料。该器件在 2.1 mW cm-2 的低功率密度下表现出 91.4 μWh·cm-2 的高能量密度,具有出色的循环寿命和出色的弯曲稳定性。因此,LTO自支撑薄膜可以被认为是可穿戴储能设备的潜在材料。该器件在 2.1 mW cm-2 的低功率密度下表现出 91.4 μWh·cm-2 的高能量密度,具有出色的循环寿命和出色的弯曲稳定性。因此,LTO自支撑薄膜可以被认为是可穿戴储能设备的潜在材料。
更新日期:2020-11-01
中文翻译:
La2Ti2O7柔性自支撑薄膜的合成及其在柔性储能器件中的应用
摘要 本研究成功合成了钛酸镧(LTO)柔性自支撑薄膜,并提供了以自支撑薄膜为活性材料的柔性电极,以验证其电化学储能性能。采用静电纺丝结合煅烧法制备了兼具优异柔韧性和优异晶体结构的自支撑薄膜。为了进一步优化煅烧工艺,可以利用SEM、TG、XRD和FT-IR等手段探索自支撑薄膜的微观结构、形貌特征和晶格结构。此外,LTO自支撑薄膜制备的柔性电极的电化学性能已在各种溶液中得到测定。与其他水相比较,806的面积电容最高。从 1 M Na2SO4 水性电解质中得到 2 mA cm-2 下的 2 mF cm-2。此外,由两个 LTO 电极制造的对称 LTO//LTO 柔性器件在 2 mA cm-2 的电流密度和 2.1 V 的高电池电压下具有 149.2 mF cm-2 的最大面积电容。 ,该器件在 2.1 mW cm-2 的低功率密度下表现出 91.4 μWh·cm-2 的高能量密度,具有出色的循环寿命和出色的弯曲稳定性。因此,LTO自支撑薄膜可以被认为是可穿戴储能设备的潜在材料。该器件在 2.1 mW cm-2 的低功率密度下表现出 91.4 μWh·cm-2 的高能量密度,具有出色的循环寿命和出色的弯曲稳定性。因此,LTO自支撑薄膜可以被认为是可穿戴储能设备的潜在材料。该器件在 2.1 mW cm-2 的低功率密度下表现出 91.4 μWh·cm-2 的高能量密度,具有出色的循环寿命和出色的弯曲稳定性。因此,LTO自支撑薄膜可以被认为是可穿戴储能设备的潜在材料。