当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
1D/2D C3N4/Graphene Composite as a Preferred Anode Material for Lithium Ion Batteries: Importance of Heterostructure Design via DFT Computation.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-05-18 , DOI: 10.1021/acsami.0c04900
David Adekoya 1 , Shanqing Zhang 1 , Marlies Hankel 2
Affiliation  

Graphene is commonly used to improve the electrochemical performance of electrode materials in rechargeable batteries by forming graphene-based heterostructures. Two-dimensional graphitic carbon nitride (C3N4) is an analogue of graphene, and it is often used to form 1D/2D and 2D/2D C3N4/graphene heterostructures. However, a theoretical understanding of the heterointerface in these heterostructures and how this affects their electrochemical performance is lacking. In this work we study the heterointerface of 1D/2D and 2D/2D C3N4/graphene heterostructures and how the different dimensions influence the lithium ion battery performance of the heterostructure. Our density functional theory (DFT) study showed that the common problem of C–N bond breakage experienced in 2D/2D C3N4/graphene heterostructure does not occur in the 1D/2D heterostructure. Furthermore, the 1D/2D heterostructure showed superior conductivity in comparison to that of the 2D/2D heterostructure of C3N4/graphene. The 1D/2D C3N4/graphene heterostructure also recorded a high theoretical capacity and rapid charge transfer. These results suggest that the properties of a heterostructure are influenced by the dimension of materials at the interface. These discoveries on the relationship between material dimension in heterostructure electrodes and their electrochemical performance will motivate the design of advanced electrode materials for rechargeable batteries.

中文翻译:

1D / 2D C3N4 /石墨烯复合材料作为锂离子电池的首选阳极材料:通过DFT计算进行异质结构设计的重要性。

石墨烯通常用于通过形成基于石墨烯的异质结构来改善可再充电电池中电极材料的电化学性能。二维石墨碳氮化物(C 3 N 4)是石墨烯的类似物,通常用于形成1D / 2D和2D / 2D C 3 N 4 /石墨烯异质结构。然而,缺乏对这些异质结构中的异质界面以及其如何影响其电化学性能的理论理解。在这项工作中,我们研究1D / 2D和2D / 2D的异质界面C 3 N 4/石墨烯异质结构以及不同尺寸如何影响异质结构的锂离子电池性能。我们的密度泛函理论(DFT)研究表明,在2D / 2D C 3 N 4 /石墨烯异质结构中遇到的C–N键断裂的常见问题不会在1D / 2D异质结构中发生。此外,与C 3 N 4 /石墨烯的2D / 2D异质结构相比,1D / 2D异质结构显示出优异的导电性。1D / 2D C 3 N 4/石墨烯异质结构还具有较高的理论容量和快速的电荷转移。这些结果表明,异质结构的性质受界面处材料尺寸的影响。这些关于异质结构电极中材料尺寸与其电化学性能之间关系的发现将推动可再充电电池的高级电极材料的设计。
更新日期:2020-05-18
down
wechat
bug