当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced Photophysical Properties of Bi2S3/AgBiS2 Nanoheterostructures Synthesized via Ag(I) Cation Exchange-Mediated Transformation of Binary Bi2S3
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-05-15 , DOI: 10.1021/acs.jpcc.0c03487 Sumana Paul 1 , Biswajit Dalal 1 , Rajkumar Jana 2 , Arnab Shit 1 , Ayan Datta 2 , Subodh Kumar De 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-05-15 , DOI: 10.1021/acs.jpcc.0c03487 Sumana Paul 1 , Biswajit Dalal 1 , Rajkumar Jana 2 , Arnab Shit 1 , Ayan Datta 2 , Subodh Kumar De 1
Affiliation
Nanoheterostructures with multiple components and interfaces have gained much attention due to their promising photophysical properties. Here, we have synthesized rod-shaped Bi2S3/AgBiS2 heterostructures via a cation exchange reaction, starting from the binary parent compound Bi2S3. The effective ionic radius of monovalent Ag+ ion is proved to be the key factor for the intercalation of Ag+ ions into the consecutive layers of the orthorhombic Bi2S3 (212) plane and finally for the total conversion of Bi2S3 to AgBiS2. Incorporation of Ag+ ions into the Bi2S3 matrix keeps the morphology of the system intact during this total conversion process. The feasibility of this transformation has been well understood through heat of reaction energy required to exchange one Bi and S atom with an Ag atom using density functional theory based on first-principle calculations. A type-I band alignment is observed at the interface of the Bi2S3/AgBiS2 heterostructure, which has been confirmed from cyclic voltammetry studies. Due to the low band offset between conduction bands of Bi2S3 and AgBiS2, electrons can easily move from one component to another through the interface, which improves the photoactivity of the nanoheterostructure. The high light absorption coefficient of both Bi2S3 and AgBiS2 is proved to be the most effective for the enhancement of the photoinduced properties.
中文翻译:
通过Ag(I)阳离子交换介导的Bi 2 S 3二元合成的Bi 2 S 3 / AgBiS 2纳米异质结构的增强的光物理性质
具有多种组分和界面的纳米异质结构由于其有希望的光物理性质而备受关注。在这里,我们从二元母体化合物Bi 2 S 3开始,通过阳离子交换反应合成了棒状的Bi 2 S 3 / AgBiS 2异质结构。一价Ag的有效离子半径+离子被证明是Ag的插层的关键因素+离子进入正交Bi的连续层2小号3(212)面和最后为Bi的总转化率2小号3至AgBiS 2。在整个总转化过程中,将Ag +离子掺入Bi 2 S 3基质中可以保持系统的形态完整。通过基于第一原理计算的密度泛函理论,通过将一个Bi和S原子与一个Ag原子交换所需的反应能的热量,人们已经很好地理解了这种转变的可行性。在Bi 2 S 3 / AgBiS 2异质结构的界面处观察到I型能带排列,这已通过循环伏安法研究得到证实。由于Bi 2 S 3和AgBiS 2的导带之间的低带偏移电子可以很容易地通过界面从一种组分移动到另一种组分,从而提高了纳米异质结构的光活性。事实证明,Bi 2 S 3和AgBiS 2的高光吸收系数对于增强光致特性最有效。
更新日期:2020-05-15
中文翻译:
通过Ag(I)阳离子交换介导的Bi 2 S 3二元合成的Bi 2 S 3 / AgBiS 2纳米异质结构的增强的光物理性质
具有多种组分和界面的纳米异质结构由于其有希望的光物理性质而备受关注。在这里,我们从二元母体化合物Bi 2 S 3开始,通过阳离子交换反应合成了棒状的Bi 2 S 3 / AgBiS 2异质结构。一价Ag的有效离子半径+离子被证明是Ag的插层的关键因素+离子进入正交Bi的连续层2小号3(212)面和最后为Bi的总转化率2小号3至AgBiS 2。在整个总转化过程中,将Ag +离子掺入Bi 2 S 3基质中可以保持系统的形态完整。通过基于第一原理计算的密度泛函理论,通过将一个Bi和S原子与一个Ag原子交换所需的反应能的热量,人们已经很好地理解了这种转变的可行性。在Bi 2 S 3 / AgBiS 2异质结构的界面处观察到I型能带排列,这已通过循环伏安法研究得到证实。由于Bi 2 S 3和AgBiS 2的导带之间的低带偏移电子可以很容易地通过界面从一种组分移动到另一种组分,从而提高了纳米异质结构的光活性。事实证明,Bi 2 S 3和AgBiS 2的高光吸收系数对于增强光致特性最有效。