当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Potassium Poly(Heptazine Imide): Transition Metal-Free Solid-State Triplet Sensitizer in Cascade Energy Transfer and [3+2]-cycloadditions.
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-05-15 , DOI: 10.1002/anie.202004747
Aleksandr Savateev 1 , Nadezda V Tarakina 1 , Volker Strauss 1 , Tanveer Hussain 2 , Katharina Ten Brummelhuis 1 , José Manuel Sánchez Vadillo 3 , Yevheniia Markushyna 1 , Stefano Mazzanti 1 , Alexander P Tyutyunnik 4 , Ralf Walczak 1 , Martin Oschatz 1 , Dirk M Guldi 5 , Amir Karton 2 , Markus Antonietti 1
Affiliation  

Polymeric carbon nitride materials have been used in numerous light‐to‐energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K‐PHI)—a benchmark carbon nitride material in photocatalysis—by means of X‐ray powder diffraction and transmission electron microscopy. Using the crystal structure of K‐PHI, periodic DFT calculations were performed to calculate the density‐of‐states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K‐PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet–triplet intersystem crossing. We utilized the K‐PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1O2) as a starting point to synthesis up to 25 different N‐rich heterocycles.

中文翻译:

聚庚嗪酰亚胺钾:级联能量转移和 [3+2]-环加成中的无过渡金属固态三线态敏化剂。

聚合氮化碳材料已用于从光催化到光电子学的众多光能转换应用中。对于新的应用和建模,我们首先通过 X 射线粉末衍射和透射电子显微镜精炼了聚庚嗪酰亚胺钾 (K-PHI)(光催化领域的基准氮化碳材料)的晶体结构。利用 K-PHI 的晶体结构,进行周期性 DFT 计算,以计算态密度 (DOS) 并定位带内态 (IBS)。研究发现 IBS 负责增强近红外区域的 K-PHI 吸收,充当电子陷阱,并可用于能量转移反应。一旦被可见光激发,氮化碳除了直接复合之外,还可以发生单线态-三线态系间窜越。我们利用以 K-PHI 为中心的三重激发态来触发一系列能量转移反应,进而敏化单线态氧 ( 1 O 2 ) 作为起点,合成多达 25 种不同的富氮杂环。
更新日期:2020-05-15
down
wechat
bug