Additive Manufacturing ( IF 10.3 ) Pub Date : 2020-05-14 , DOI: 10.1016/j.addma.2020.101295 Jingjing Nie , Liang Wei , Dong-ling Li , Lei Zhao , Ying Jiang , Qian Li
Composition-graded materials could be designed to rapidly establish the structure-property with high-throughput methods. In this study, stainless steel 316L(SS316L) - 431(SS431) graded material with the SS316L content ranging from 0 to 100 wt.% was fabricated by directed energy deposition additive manufacturing. Composition, phase constitution, microstructure and corrosion behavior of the graded material were characterized by laser-induced breakdown spectroscopy (LIBS), micro-beam X-ray diffraction (XRD), scanning electron microscope (SEM) and high-throughput local electrochemical techniques respectively. The results show that the relative amount of γ-Fe phase increases with the increasing SS316L content, leading to a noticeable decline of microhardness from 578 to 205 HV. Accordingly, the dominant microstructure varies from equiaxed dendrites to a mixture of dendritic and cellular structures. As the content of SS316L increases, the reduced carbides at grain boundaries and the increasing compactness of passive film improve the general and pitting corrosion resistance of the material. When the SS316L content is higher than 50 wt.%, the Volta potential and pitting susceptibility are similar to the pure SS316L part, while the microhardness is higher. Such a high-throughput screening process allows one to reliably select the constituents with the presence of SS316L over 50 wt.% as a potential component under the requirement of high corrosion resistance and wear resistance.
中文翻译:
增材制造的SS316L-SS431梯度材料的微观结构和腐蚀行为的高通量表征
可以对成分分级的材料进行设计,以通过高通量方法快速建立结构特性。在这项研究中,通过定向能量沉积添加剂制造工艺制造了不锈钢316L(SS316L)-431(SS431)渐变材料,其SS316L含量为0至100 wt。%。分别通过激光诱导击穿光谱法(LIBS),微束X射线衍射(XRD),扫描电子显微镜(SEM)和高通量局部电化学技术表征了梯度材料的组成,相组成,微观结构和腐蚀行为。 。结果表明,随着SS316L含量的增加,γ-Fe相的相对含量增加,导致显微硬度从578 HV下降到205 HV。因此,主要的微观结构从等轴枝晶到树枝状和细胞结构的混合物。随着SS316L含量的增加,晶界碳化物的减少和钝化膜致密性的提高改善了材料的耐一般腐蚀和点蚀性能。当SS316L含量高于50重量%时,伏特电势和点蚀敏感性与纯SS316L部分相似,而显微硬度更高。这种高通量的筛选方法允许在高耐腐蚀性和耐磨性的要求下可靠地选择存在超过50重量%的SS316L的成分作为潜在组分。减少了晶界的碳化物,增加了钝化膜的致密性,提高了材料的耐一般腐蚀和点蚀性能。当SS316L含量高于50重量%时,伏特电势和点蚀敏感性与纯SS316L部分相似,而显微硬度更高。这种高通量的筛选方法允许在高耐腐蚀性和耐磨性的要求下可靠地选择存在超过50重量%的SS316L的成分作为潜在组分。减少了晶界的碳化物,增加了钝化膜的致密性,改善了材料的耐一般腐蚀和点蚀性能。当SS316L含量高于50重量%时,伏特电势和点蚀敏感性与纯SS316L部分相似,而显微硬度更高。这种高通量的筛选方法允许在高耐腐蚀性和耐磨性的要求下可靠地选择存在超过50重量%的SS316L的成分作为潜在组分。