当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrathin Lithium Aluminate Nanoflake-Inlaid Sulfur as a Cathode Material for Lithium–Sulfur Batteries with High Areal Capacity
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-05-14 00:00:00 , DOI: 10.1021/acsaem.0c00597 Arnab Ghosh 1, 2, 3 , Ajit Kumar 1, 2, 3 , Amlan Roy 3 , Cuong Nguyen 2 , Aakash Ahuja 3 , Md. Adil 3 , Manjunath Chatti 2 , Mega Kar 2 , Douglas R. MacFarlane 2 , Sagar Mitra 3
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-05-14 00:00:00 , DOI: 10.1021/acsaem.0c00597 Arnab Ghosh 1, 2, 3 , Ajit Kumar 1, 2, 3 , Amlan Roy 3 , Cuong Nguyen 2 , Aakash Ahuja 3 , Md. Adil 3 , Manjunath Chatti 2 , Mega Kar 2 , Douglas R. MacFarlane 2 , Sagar Mitra 3
Affiliation
Direct Utilization of commercial sulfur as a cathode material is ideal for the bulk production of high-energy-density lithium–sulfur (Li–S) batteries. However, due to large ion-diffusion length, commercial sulfur suffers from low practical capacity. To achieve adequate capacity with long-term cyclability using the commercial sulfur-based cathodes, we introduce ultrathin lithium aluminate (LiAlO2) nanoflakes as polysulfide immobilizers with excellent Li+ ion conductivity. The ultrathin LiAlO2 nanoflake-inlaid sulfur cathode exhibits high areal capacity with extremely stable cycling performance. At a current rate of 0.2C, our cathode delivered a high areal capacity of 4.86 mA h cm–2 during the first cycle and retains 4.75 mA h cm–2 after 100 cycles. At a high current rate of 3C, the cathode retains the areal capacity of 2.52 mA h cm–2 after 500 cycles, with an extremely low capacity decay rate of 0.02% per cycle. In situ Raman spectroscopy studies coupled with the chronoamperometry technique reveal that LiAlO2 nanoflakes catalyze the redox kinetics in the Li–S batteries. This work shows a promising strategy to directly utilize commercial sulfur powder in practical Li–S batteries.
中文翻译:
超薄铝酸锂纳米片状镶嵌硫作为高容量锂-硫电池的阴极材料
直接使用商业用硫作为正极材料非常适合批量生产高能密度锂硫(Li–S)电池。然而,由于大的离子扩散长度,商业硫的实用能力低。为了使用商业上基于硫的阴极达到足够的容量并具有长期可循环性,我们引入了超薄铝酸锂(LiAlO 2)纳米薄片作为具有出色Li +离子电导率的聚硫化物固定剂。LiAlO 2纳米薄片镶嵌的超薄硫阴极显示出高的面容量,并具有极其稳定的循环性能。在0.2C的电流速率下,我们的阴极在第一个循环中提供了4.86 mA h cm –2的高面积容量,并保留了4.75 mA h cm100个循环后–2。在3C的高电流速率下,阴极在500个循环后仍保持2.52 mA h cm -2的面积容量,每循环0.02%的极低容量衰减率。原位拉曼光谱研究与计时电流分析技术相结合,揭示了LiAlO 2纳米薄片催化Li-S电池中的氧化还原动力学。这项工作表明了一种有前景的策略,可以直接在实用的Li-S电池中利用商业化的硫粉。
更新日期:2020-05-14
中文翻译:
超薄铝酸锂纳米片状镶嵌硫作为高容量锂-硫电池的阴极材料
直接使用商业用硫作为正极材料非常适合批量生产高能密度锂硫(Li–S)电池。然而,由于大的离子扩散长度,商业硫的实用能力低。为了使用商业上基于硫的阴极达到足够的容量并具有长期可循环性,我们引入了超薄铝酸锂(LiAlO 2)纳米薄片作为具有出色Li +离子电导率的聚硫化物固定剂。LiAlO 2纳米薄片镶嵌的超薄硫阴极显示出高的面容量,并具有极其稳定的循环性能。在0.2C的电流速率下,我们的阴极在第一个循环中提供了4.86 mA h cm –2的高面积容量,并保留了4.75 mA h cm100个循环后–2。在3C的高电流速率下,阴极在500个循环后仍保持2.52 mA h cm -2的面积容量,每循环0.02%的极低容量衰减率。原位拉曼光谱研究与计时电流分析技术相结合,揭示了LiAlO 2纳米薄片催化Li-S电池中的氧化还原动力学。这项工作表明了一种有前景的策略,可以直接在实用的Li-S电池中利用商业化的硫粉。