当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fiber-Shape Na3V2(PO4)2F3@N-Doped Carbon as a Cathode Material with Enhanced Cycling Stability for Na-Ion Batteries.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-05-13 , DOI: 10.1021/acsami.0c05490 Yunsha Li 1, 2 , Xinghui Liang 2 , Guobin Zhong 1 , Chao Wang 1 , Shijia Wu 1 , Kaiqi Xu 1 , Chenghao Yang 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-05-13 , DOI: 10.1021/acsami.0c05490 Yunsha Li 1, 2 , Xinghui Liang 2 , Guobin Zhong 1 , Chao Wang 1 , Shijia Wu 1 , Kaiqi Xu 1 , Chenghao Yang 2
Affiliation
To overcome intrinsic low electronic conductance, delicately designed fiber-shape Na3V2(PO4)2F3@N-doped carbon composites (NVPF@C) have been prepared for boosting Na-storage performance. This distinctive interlinked three-dimensional network structure can effectively facilitate electron/Na-ion transportation by decreasing the NVPF particle size to shorten the ionic diffusion paths and introducing a conducting N-doping carbon scaffold to improve electronic conductivity. Benefiting from the favorable structural design and fascinating reaction kinetics, the modified NVPF@C material demonstrates superior sodium-storage performance with 109.5 mAh g–1 high reversible capacity at a moderate current of 0.1 C, excellent rate tolerance of 78.9 mAh g–1 at a high rate of 30 C, and gratifying long-term cyclability (87.8% capacity retention after 1000 cycles at 20 C; 83.4% capacity retention after 1500 round trips at a ultrahigh rate of 50 C). The fascinating electrochemical performance remains stable when NVPF@C was examined as the cathode material for a full cell, suggesting the fiber-shape NVPF@C as one of the most promising applicable materials for sodium-ion batteries. Moreover, the approach of the three-dimensional conductive network by electrospinning is proposed as a strategy of efficiency and promising prospect to enhance the electrochemical property of other materials for sodium-ion batteries.
中文翻译:
碳纤维状Na3V2(PO4)2F3 @ N掺杂碳作为阴极材料,具有增强的钠离子电池循环稳定性。
为了克服固有的低电子电导率,已经制备了精心设计的纤维状Na 3 V 2(PO 4)2 F 3掺杂N的碳复合材料(NVPF @ C),以提高Na存储性能。这种独特的互连三维网络结构可以通过减小NVPF粒径以缩短离子扩散路径,并引入导电的N掺杂碳支架来改善电子导电性,从而有效地促进电子/ Na离子的运输。得益于良好的结构设计和引人入胜的反应动力学,改性的NVPF @ C材料在109.5 mAh g –1的条件下显示出优异的钠存储性能。在0.1 C的中等电流下具有高可逆容量,在30 C的高速率下具有出色的速率耐受性78.9 mAh g –1,并具有令人满意的长期可循环性(在20 C下1000次循环后,容量保持率为87.8%; 83.4%的容量保持率在以50 C的超高速率进行1500次往返之后)。当将NVPF @ C作为全电池的阴极材料进行检查时,其迷人的电化学性能保持稳定,这表明纤维状NVPF @ C是钠离子电池最有希望的适用材料之一。此外,提出了通过静电纺丝的三维导电网络的方法,作为提高钠离子电池其他材料的电化学性能的一种有效策略和有希望的前景。
更新日期:2020-05-13
中文翻译:
碳纤维状Na3V2(PO4)2F3 @ N掺杂碳作为阴极材料,具有增强的钠离子电池循环稳定性。
为了克服固有的低电子电导率,已经制备了精心设计的纤维状Na 3 V 2(PO 4)2 F 3掺杂N的碳复合材料(NVPF @ C),以提高Na存储性能。这种独特的互连三维网络结构可以通过减小NVPF粒径以缩短离子扩散路径,并引入导电的N掺杂碳支架来改善电子导电性,从而有效地促进电子/ Na离子的运输。得益于良好的结构设计和引人入胜的反应动力学,改性的NVPF @ C材料在109.5 mAh g –1的条件下显示出优异的钠存储性能。在0.1 C的中等电流下具有高可逆容量,在30 C的高速率下具有出色的速率耐受性78.9 mAh g –1,并具有令人满意的长期可循环性(在20 C下1000次循环后,容量保持率为87.8%; 83.4%的容量保持率在以50 C的超高速率进行1500次往返之后)。当将NVPF @ C作为全电池的阴极材料进行检查时,其迷人的电化学性能保持稳定,这表明纤维状NVPF @ C是钠离子电池最有希望的适用材料之一。此外,提出了通过静电纺丝的三维导电网络的方法,作为提高钠离子电池其他材料的电化学性能的一种有效策略和有希望的前景。