当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High‐Performance Overall CO2 Splitting on Hierarchical Structured Cobalt Disulfide with Partially Removed Sulfur Edges
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-05-11 , DOI: 10.1002/adfm.202000154 Zhen Han 1 , Qi Hu 1 , Zhong Cheng 1 , Guomin Li 1 , Xiaowan Huang 1 , Ziyu Wang 1 , Hengpan Yang 1 , Xiangzhong Ren 1 , Qianling Zhang 1 , Jianhong Liu 1 , Chuanxin He 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-05-11 , DOI: 10.1002/adfm.202000154 Zhen Han 1 , Qi Hu 1 , Zhong Cheng 1 , Guomin Li 1 , Xiaowan Huang 1 , Ziyu Wang 1 , Hengpan Yang 1 , Xiangzhong Ren 1 , Qianling Zhang 1 , Jianhong Liu 1 , Chuanxin He 1
Affiliation
The ability to develop bifunctional electrocatalysts for concurrent CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER) is the key to the practical application of CO2 splitting to produce CO. However, this remains a grand challenge. Herein, a robust strategy to rationally craft hierarchical structured bifunctional electrocatalysts composed of 3D CoS2 nanocages interconnected on 2D CoS2 nanosheet arrays (denoted hierarchical CoS2 nanocages) for high‐performance CO2 splitting is developed. The subsequent calcination removes the partial S edges of CoS2, thereby strongly suppressing the hydrogen evolution reaction (HER) of CoS2. By combining theoretic and experimental results, for the first time, it is discovered that the plane S of CoS2, instead of S edges, are highly active for CO2RR but inactive for HER, rendering the plane S as ideal active sites for CO2RR. Intriguingly, the composition tuning via calcination and the presence of a hierarchical architecture confer hierarchical CoS2 nanocages respective outstanding CO2RR and OER performance. Notably, the hierarchical CoS2 nanocages can be exploited as bifunctional electrocatalysts for overall CO2 splitting to yield the current density of 1 mA cm−2 at a small cell voltage of 1.92 V, much lower than the widely reported values (>2.5 V).
中文翻译:
分层去除二硫键的分层结构二硫化钴的高效整体CO2分离
能够同时进行CO 2还原反应(CO 2 RR)和析氧反应(OER)的双功能电催化剂的开发能力是实际应用CO 2分解生产CO的关键。然而,这仍然是一个巨大的挑战。本文中,提出了一种鲁棒的策略,可以合理地制造由互连在2D CoS 2纳米片阵列(称为分层CoS 2纳米笼)上的3D CoS 2纳米笼组成的分层结构化双功能电催化剂,以实现高性能CO 2裂解。随后的煅烧去除了CoS 2的部分S边缘从而强烈地抑制了CoS 2的析氢反应(HER)。通过理论和实验结果的结合,首次发现CoS 2的平面S代替S边缘对CO 2 RR具有高活性,而对HER无活性,从而使平面S成为CO的理想活性位点2 RR。有趣的是,通过煅烧进行的成分调整以及分层体系结构的存在赋予了分层CoS 2纳米笼各自出色的CO 2 RR和OER性能。值得注意的是,分层CoS 2纳米笼可以用作整体CO 2的双功能电催化剂。在1.92 V的小电池电压下分裂产生1 mA cm -2的电流密度,远低于广泛报道的值(> 2.5 V)。
更新日期:2020-06-18
中文翻译:
分层去除二硫键的分层结构二硫化钴的高效整体CO2分离
能够同时进行CO 2还原反应(CO 2 RR)和析氧反应(OER)的双功能电催化剂的开发能力是实际应用CO 2分解生产CO的关键。然而,这仍然是一个巨大的挑战。本文中,提出了一种鲁棒的策略,可以合理地制造由互连在2D CoS 2纳米片阵列(称为分层CoS 2纳米笼)上的3D CoS 2纳米笼组成的分层结构化双功能电催化剂,以实现高性能CO 2裂解。随后的煅烧去除了CoS 2的部分S边缘从而强烈地抑制了CoS 2的析氢反应(HER)。通过理论和实验结果的结合,首次发现CoS 2的平面S代替S边缘对CO 2 RR具有高活性,而对HER无活性,从而使平面S成为CO的理想活性位点2 RR。有趣的是,通过煅烧进行的成分调整以及分层体系结构的存在赋予了分层CoS 2纳米笼各自出色的CO 2 RR和OER性能。值得注意的是,分层CoS 2纳米笼可以用作整体CO 2的双功能电催化剂。在1.92 V的小电池电压下分裂产生1 mA cm -2的电流密度,远低于广泛报道的值(> 2.5 V)。