当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Single Atoms Anchored on Cobalt-Based Catalysts Derived from Hydrogels Containing Phthalocyanine toward the Oxygen Reduction Reaction
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-05-11 , DOI: 10.1021/acssuschemeng.0c02158 Yuanyuan Fu 1 , Dawei Xu 1 , Yefei Wang 1 , Xuhui Li 1 , Zhengbo Chen 1 , Kai Li 1 , Zhongfeng Li 1 , Lirong Zheng 2 , Xia Zuo 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-05-11 , DOI: 10.1021/acssuschemeng.0c02158 Yuanyuan Fu 1 , Dawei Xu 1 , Yefei Wang 1 , Xuhui Li 1 , Zhengbo Chen 1 , Kai Li 1 , Zhongfeng Li 1 , Lirong Zheng 2 , Xia Zuo 1
Affiliation
Herein, a novel hydrogel-derived three-dimensional network-like nanostructured CoOX/Co–N–C(800) catalyst was synthesized. CoOX nanoparticles are embedded on N-doped carbon with single Co atoms anchored after pyrolysis. The as-prepared CoOX/Co–N–C(800) catalyst possesses excellent electrochemical performance toward the oxygen reduction reaction with a positive onset and half-wave potential of 0.95 and 0.88 V (vs RHE), respectively, including almost a four-electron pathway (3.97) and better durability compared with the 20% commercial Pt/C catalyst in an alkaline electrolyte. Also, the results demonstrate that the high performance is attributed to the synergistic effect of CoOX nanoparticles and single Co atoms.
中文翻译:
含酞菁水凝胶的钴基催化剂对氧还原反应的固定单原子
在这里,合成了一种新型的水凝胶衍生的三维网络状纳米结构的CoO X / Co–N–C(800)催化剂。CoO X纳米粒子嵌入热解后锚定的单个Co原子上的N掺杂碳上。所制备的CoO X / Co–N–C(800)催化剂在氧还原反应方面具有出色的电化学性能,其正发作和半波电势分别为0.95和0.88 V(vs RHE),包括几乎四个-电子途径(3.97)和比碱性电解液中20%商用Pt / C催化剂更好的耐久性。而且,结果表明,高性能归因于CoO X纳米颗粒和单个Co原子的协同作用。
更新日期:2020-05-11
中文翻译:
含酞菁水凝胶的钴基催化剂对氧还原反应的固定单原子
在这里,合成了一种新型的水凝胶衍生的三维网络状纳米结构的CoO X / Co–N–C(800)催化剂。CoO X纳米粒子嵌入热解后锚定的单个Co原子上的N掺杂碳上。所制备的CoO X / Co–N–C(800)催化剂在氧还原反应方面具有出色的电化学性能,其正发作和半波电势分别为0.95和0.88 V(vs RHE),包括几乎四个-电子途径(3.97)和比碱性电解液中20%商用Pt / C催化剂更好的耐久性。而且,结果表明,高性能归因于CoO X纳米颗粒和单个Co原子的协同作用。