当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ACQ-to-AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two-Photon NIR Bioimaging.
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-05-09 , DOI: 10.1002/anie.202005785
Yuanyuan Li 1, 2 , Shunjie Liu 1 , Huwei Ni 3 , Haoke Zhang 1 , Hequn Zhang 3, 4 , Clarence Chuah 1 , Chao Ma 5 , Kam Sing Wong 5 , Jacky W Y Lam 1 , Ryan T K Kwok 1, 2 , Jun Qian 3 , Xuefeng Lu 6 , Ben Zhong Tang 1, 2, 7
Affiliation  

The traditional design strategies for highly bright solid‐state luminescent materials rely on weakening the intermolecular π–π interactions, which may limit diversity when developing new materials. Herein, we propose a strategy of tuning the molecular packing mode by regioisomerization to regulate the solid‐state fluorescence. TBP‐e‐TPA with a molecular rotor in the end position of a planar core adopts a long‐range cofacial packing mode, which in the solid state is almost non‐emissive. By shifting molecular rotors to the bay position, the resultant TBP‐b‐TPA possesses a discrete cross packing mode, giving a quantum yield of 15.6±0.2 %. These results demonstrate the relationship between the solid‐state fluorescence efficiency and the molecule's packing mode. Thanks to the good photophysical properties, TBP‐b‐TPA nanoparticles were used for two‐photon deep brain imaging. This molecular design philosophy provides a new way of designing highly bright solid‐state fluorophores.

中文翻译:

从ACQ到AIE的转化:通过区域异构化调整双光子NIR生物成像的分子堆积。

高亮度固态发光材料的传统设计策略依赖于减弱分子间的π-π相互作用,这可能会限制开发新材料时的多样性。在本文中,我们提出了一种通过区域异构化来调节分子堆积模式以调节固态荧光的策略。TBP‐ e‐ TPA在扁平核的末端具有分子转子,采用了远距离的界面堆积模式,在固态时几乎没有发射。通过将分子转子转移到机架位置,得到的TBP- b‐TPA具有离散的交叉堆积模式,量子产率为15.6±0.2%。这些结果证明了固态荧光效率与分子的堆积模式之间的关系。由于具有良好的光物理特性,TBP‐ b‐ TPA纳米粒子被用于双光子深脑成像。这种分子设计原理提供了一种设计高亮度固态荧光团的新方法。
更新日期:2020-05-09
down
wechat
bug