当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hollow Mesoporous Organosilica Spheres Encapsulating PdAg Nanoparticles and Poly(Ethyleneimine) as Reusable Catalysts for CO2 Hydrogenation to Formate
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-05-08 , DOI: 10.1021/acscatal.0c01505
Yasutaka Kuwahara 1, 2, 3 , Yuki Fujie 1 , Takashi Mihogi 1 , Hiromi Yamashita 1, 2
Affiliation  

CO2 hydrogenation to formic acid, a renewable hydrogen storage compound, has been regarded as a key reaction to realize hydrogen energy cycles. However, the development of robust heterogeneous catalysts with high activity and stability has been a challenge. We herein report a synthesis of hollow nanostructured composite consisting of PdAg nanoparticles (NPs) and aminopolymers, poly(ethyleneimine) (PEI), confined in hollow mesoporous organosilica spheres (HMOSs), which act as an efficient and stable heterogeneous catalyst for hydrogenation of CO2 to formate. The catalyst exhibits high formate yield with a turnover number (TON) of over 2700 and 13 700 for 22 and 110 h, respectively, under mild reaction conditions (total 2.0 MPa, 100 °C), which outperforms the conventional supported Pd catalysts because of the cooperative action of PEI and PdAg NPs confined in a nanospace to directly capture, activate, and hydrogenate the CO2 molecule. The catalyst is reusable over multiple cycles with high activity because of the protective effect and alkali-tolerant property of HMOSs. This study offers a strategy for the design and development of an efficient and stable heterogeneous catalyst for CO2 conversion.

中文翻译:

空心介孔有机硅球体封装PdAg纳米颗粒和聚(乙烯亚胺)作为可重复使用的CO 2加氢生成甲酸酯的催化剂

将CO 2加氢成甲酸(一种可再生的储氢化合物)被视为实现氢能循环的关键反应。然而,开发具有高活性和稳定性的坚固的多相催化剂一直是一个挑战。我们在本文中报告了由PdAg纳米颗粒(NPs)和氨基聚合物,聚(乙烯亚胺)(PEI)组成的空心纳米结构复合材料的合成,该复合材料被限制在空心介孔有机硅球(HMOS)中,该球形分子用作有效且稳定的CO加氢非均相催化剂2结成队。在温和的反应条件下(总2.0 MPa,100°C),该催化剂表现出较高的甲酸收率,在22和110 h内的转化率(TON)分别超过2700和13 700,这优于传统的负载型Pd催化剂PEI和PdAg NP的协同作用被限制在纳米空间中,以直接捕获,活化和氢化CO 2分子。由于HMOS的保护作用和耐碱性能,该催化剂可在多个循环中以高活性重复使用。这项研究为设计和开发一种高效稳定的多相转化CO 2的非均相催化剂提供了一种策略。
更新日期:2020-05-08
down
wechat
bug