当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Water Delivery Channel Design in Solar Evaporator for Efficient and Durable Water Evaporation with Salt Rejection
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-05-07 , DOI: 10.1021/acssuschemeng.9b06844 Xun Wang 1 , Qimao Gan 1 , Rong Chen 1 , Huan Peng 1 , Tuqiao Zhang 1 , Miaomiao Ye 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-05-07 , DOI: 10.1021/acssuschemeng.9b06844 Xun Wang 1 , Qimao Gan 1 , Rong Chen 1 , Huan Peng 1 , Tuqiao Zhang 1 , Miaomiao Ye 1
Affiliation
Recently, solar evaporators composed of photothermal materials and their carriers have been designed and produced to enhance the solar evaporation rates based on interfacial solar heating. However, maintaining the high evaporation rate while preventing salt accumulation remains a challenge. In this paper, a water transport channel was designed to move the brine outside the solar evaporator to the expandable polyethylene (EPE) foam around the evaporator, thereby preventing salt accumulation in the evaporator. The concentration of the treated seawater was not increased during continuous evaporation and therefore avoiding the treatment of the high-concentration brine. The salt-rejecting solar evaporator was composed of a top layer of photothermal materials for high solar absorption, a thermal barrier layer of EPE foam for floatation and heat insulation, and a rationally designed water transport channel of air-laid paper (ALP) for fast seawater delivery to the top layer and outside the evaporator. The water evaporation rate of the simulated seawater by the salt-rejecting evaporator under 1 kW·m–2 solar irradiance was significantly enhanced to 1.46 kg·m–2·h–1 (accompanied by a photothermal conversion efficiency of 91.7%), which was 3.74 times higher than evaporation rate of the simulated seawater alone. The salt-rejecting evaporator also displayed excellent stability and durability as the evaporation rate was unchanged after 16 cycles of use. Finally, the potential application of the salt-rejecting evaporator was demonstrated in a practical setting by packing 25 evaporators in an EPE foam plate.
中文翻译:
太阳能蒸发器的出水通道设计,实现高效,持久的除盐蒸发
近来,已经设计和生产了由光热材料及其载体组成的太阳能蒸发器,以基于界面太阳能加热来提高太阳能蒸发率。然而,在防止盐积累的同时保持高蒸发速率仍然是挑战。在本文中,设计了一个输水通道,将盐水从太阳能蒸发器外部移至蒸发器周围的可膨胀聚乙烯(EPE)泡沫中,从而防止盐在蒸发器中积聚。在连续蒸发过程中,处理过的海水的浓度没有增加,因此避免了对高浓度盐水的处理。排盐太阳能蒸发器由光热材料的顶层构成,可吸收大量太阳光,EPE泡沫的隔热层,用于漂浮和隔热,合理设计的气流成网纸(ALP)的输水通道,用于将海水快速输送到顶层和蒸发器外部。1 kW·m以下排盐蒸发器模拟海水的水蒸发率–2太阳辐照度显着提高到1.46 kg·m –2 ·h –1(伴随着91.7%的光热转换效率),比单独的模拟海水蒸发率高3.74倍。排盐蒸发器还显示出优异的稳定性和耐久性,因为在使用16个循环后蒸发速率没有变化。最后,通过将25个蒸发器装在EPE泡沫板上,在实际环境中证明了排盐蒸发器的潜在应用。
更新日期:2020-05-07
中文翻译:
太阳能蒸发器的出水通道设计,实现高效,持久的除盐蒸发
近来,已经设计和生产了由光热材料及其载体组成的太阳能蒸发器,以基于界面太阳能加热来提高太阳能蒸发率。然而,在防止盐积累的同时保持高蒸发速率仍然是挑战。在本文中,设计了一个输水通道,将盐水从太阳能蒸发器外部移至蒸发器周围的可膨胀聚乙烯(EPE)泡沫中,从而防止盐在蒸发器中积聚。在连续蒸发过程中,处理过的海水的浓度没有增加,因此避免了对高浓度盐水的处理。排盐太阳能蒸发器由光热材料的顶层构成,可吸收大量太阳光,EPE泡沫的隔热层,用于漂浮和隔热,合理设计的气流成网纸(ALP)的输水通道,用于将海水快速输送到顶层和蒸发器外部。1 kW·m以下排盐蒸发器模拟海水的水蒸发率–2太阳辐照度显着提高到1.46 kg·m –2 ·h –1(伴随着91.7%的光热转换效率),比单独的模拟海水蒸发率高3.74倍。排盐蒸发器还显示出优异的稳定性和耐久性,因为在使用16个循环后蒸发速率没有变化。最后,通过将25个蒸发器装在EPE泡沫板上,在实际环境中证明了排盐蒸发器的潜在应用。