当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insight of MOF Environment-Dependent Enzyme Activity via MOFs-in-Nanochannels Configuration
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-05-06 , DOI: 10.1021/acscatal.0c00591
Junli Guo 1 , Lingling Yang 1 , Zhida Gao 1 , Chenxi Zhao 1 , Ye Mei 2, 3, 4 , Yan-Yan Song 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2020-05-06 , DOI: 10.1021/acscatal.0c00591
Junli Guo 1 , Lingling Yang 1 , Zhida Gao 1 , Chenxi Zhao 1 , Ye Mei 2, 3, 4 , Yan-Yan Song 1
Affiliation
![]() |
Maintaining the high activity of an enzyme is a fundamental requirement to widen the application of metal–organic frameworks (MOFs) in the biotechnology, biosensor, and biomedicine fields. However, it is still challenging to monitor and understand an MOF environment-related activity for an enzyme. Here, we developed a MOFs-in-nanochannels configuration for broadening the biocatalytic activity of an enzyme in MOFs on demand. ZIF-8 [Zn(mim)2, Hmim = 2-methylimidazolated] grown in TiO2 nanochannels is used as the platform, and cytochrome C (CytC) is used as a model enzyme encapsulated in ZIF-8. The enzymatic catalytic process converts 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to a positively charged product (ABTS+). On the basis of current–voltage properties, the change of ion transport characteristics in nanochannels can be monitored with time. The ZIF-8 encapsulating CytC molecules not only exhibit a significantly enhanced enzymatic activity in a wide temperature region (37–80 °C) but also have remarkably long storage stability at room temperature. The results of quantum mechanical calculation indicate that the Fe–S bond of CytC is inclined to break in the environment of ZIF-8 owing to the confinement effect of the MOF structure, favorable for enzymatic catalysis. The MOFs-in-nanochannel configuration provides an innovative and label-free design for the onsite monitoring of catalytic activity of an enzyme in MOFs, which holds great potential in constructing biosensing platforms with remarkable performance and stability.
中文翻译:
通过MOFs-in-Nanochannels配置洞察MOF环境相关的酶活性
维持酶的高活性是扩大金属有机框架(MOF)在生物技术,生物传感器和生物医学领域的应用的基本要求。但是,监视和了解与MOF环境有关的酶活性仍然具有挑战性。在这里,我们开发了MOFs在纳米通道中的配置,以根据需要扩展MOFs中酶的生物催化活性。在TiO 2纳米通道中生长的ZIF-8 [Zn(mim)2,Hmim = 2-甲基咪唑基化]被用作平台,而细胞色素C(CytC)被用作ZIF-8中封装的模型酶。酶催化过程将2,2'-叠氮基双(3-乙基苯并噻唑啉-6-磺酸盐)(ABTS)转化为带正电荷的产物(ABTS +)。根据电流-电压特性,可以随时间监视纳米通道中离子传输特性的变化。ZIF-8封装的CytC分子不仅在宽温度范围(37–80°C)中显示出显着增强的酶活性,而且在室温下的存储稳定性也非常长。量子力学计算结果表明,由于MOF结构的封闭作用,CytC的Fe-S键在ZIF-8环境中倾向于断裂,有利于酶催化。MOF的纳米通道配置为现场监测MOF中酶的催化活性提供了一种创新且无标签的设计,在构建具有卓越性能和稳定性的生物传感平台方面具有巨大潜力。
更新日期:2020-05-06
中文翻译:

通过MOFs-in-Nanochannels配置洞察MOF环境相关的酶活性
维持酶的高活性是扩大金属有机框架(MOF)在生物技术,生物传感器和生物医学领域的应用的基本要求。但是,监视和了解与MOF环境有关的酶活性仍然具有挑战性。在这里,我们开发了MOFs在纳米通道中的配置,以根据需要扩展MOFs中酶的生物催化活性。在TiO 2纳米通道中生长的ZIF-8 [Zn(mim)2,Hmim = 2-甲基咪唑基化]被用作平台,而细胞色素C(CytC)被用作ZIF-8中封装的模型酶。酶催化过程将2,2'-叠氮基双(3-乙基苯并噻唑啉-6-磺酸盐)(ABTS)转化为带正电荷的产物(ABTS +)。根据电流-电压特性,可以随时间监视纳米通道中离子传输特性的变化。ZIF-8封装的CytC分子不仅在宽温度范围(37–80°C)中显示出显着增强的酶活性,而且在室温下的存储稳定性也非常长。量子力学计算结果表明,由于MOF结构的封闭作用,CytC的Fe-S键在ZIF-8环境中倾向于断裂,有利于酶催化。MOF的纳米通道配置为现场监测MOF中酶的催化活性提供了一种创新且无标签的设计,在构建具有卓越性能和稳定性的生物传感平台方面具有巨大潜力。