Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation of Highly Porous Graphitic Activated Carbon as Electrode Materials for Supercapacitors by Hydrothermal Pretreatment-Assisted Chemical Activation.
ACS Omega ( IF 3.7 ) Pub Date : 2020-05-06 , DOI: 10.1021/acsomega.0c00938 Dongdong Liu 1, 2 , Bin Xu 1 , Junhao Zhu 1 , Shanshan Tang 2 , Fang Xu 3 , Song Li 1 , Boyin Jia 4 , Guang Chen 2
ACS Omega ( IF 3.7 ) Pub Date : 2020-05-06 , DOI: 10.1021/acsomega.0c00938 Dongdong Liu 1, 2 , Bin Xu 1 , Junhao Zhu 1 , Shanshan Tang 2 , Fang Xu 3 , Song Li 1 , Boyin Jia 4 , Guang Chen 2
Affiliation
The obstruction of traditional chemical activation lies in the addition of excessive catalysts to prepare the highly porous graphitic activated carbon (HPGAC), we propose the hydrothermal pretreatment-assisted chemical activation method to synthesize HPGAC as electrode materials using a small amount of Na-based catalysts (20 wt %). Hydrolysis accompanied by the strong depolymerization and reorganization of the coal framework is beneficial to the removal of different kinds of oxygen-containing structures (including cross-linking bonds, functional groups, and heterocycles) from lignite; thus, the deoxidization effect of hydrothermal carbonization (HTC) on hydrochar gradually strengthens with the increase in pretreatment temperature from 180 to 300 °C, resulting in the formation of a lot of disordered nanostructures and a smooth and compact surface. In the subsequent chemical activation stage, the microstructure of hydrochar is beneficial to the formation of a lot of graphene-like sheets and developed micropores even under a small amount of Na-based catalysts (20 wt %). The as-obtained C-HTC-300 with a highly ordered microstructure and a high specific surface area (SBET) of 1945.33 m2/g has an excellent electrochemical performance. Compared with a large consumption of catalyst for synthesizing HPGAC in traditional chemical activation, the hydrothermal pretreatment-assisted method meets the environmental protection and low-cost preparation requirements.
中文翻译:
水热预处理辅助化学活化制备高孔石墨活性炭作为超级电容器电极材料。
传统化学活化的障碍在于制备高孔石墨活性炭(HPGAC)时添加过量催化剂,我们提出水热预处理辅助化学活化方法,使用少量钠基催化剂合成HPGAC作为电极材料(20重量%)。水解伴随着煤骨架的强烈解聚和重组,有利于褐煤中各种含氧结构(包括交联键、官能团和杂环)的脱除;因此,随着预处理温度从180℃升高到300℃,水热碳化(HTC)对水炭的脱氧作用逐渐增强,导致形成大量无序的纳米结构和光滑致密的表面。在随后的化学活化阶段,即使在少量钠基催化剂(20 wt%)下,水炭的微观结构也有利于大量类石墨烯片的形成和发达的微孔。所得C-HTC-300具有高度有序的微观结构和1945.33 m 2 /g的高比表面积( S BET ),具有优异的电化学性能。与传统化学活化合成HPGAC需要大量催化剂相比,水热预处理辅助方法满足了环保、低成本的制备要求。
更新日期:2020-05-06
中文翻译:
水热预处理辅助化学活化制备高孔石墨活性炭作为超级电容器电极材料。
传统化学活化的障碍在于制备高孔石墨活性炭(HPGAC)时添加过量催化剂,我们提出水热预处理辅助化学活化方法,使用少量钠基催化剂合成HPGAC作为电极材料(20重量%)。水解伴随着煤骨架的强烈解聚和重组,有利于褐煤中各种含氧结构(包括交联键、官能团和杂环)的脱除;因此,随着预处理温度从180℃升高到300℃,水热碳化(HTC)对水炭的脱氧作用逐渐增强,导致形成大量无序的纳米结构和光滑致密的表面。在随后的化学活化阶段,即使在少量钠基催化剂(20 wt%)下,水炭的微观结构也有利于大量类石墨烯片的形成和发达的微孔。所得C-HTC-300具有高度有序的微观结构和1945.33 m 2 /g的高比表面积( S BET ),具有优异的电化学性能。与传统化学活化合成HPGAC需要大量催化剂相比,水热预处理辅助方法满足了环保、低成本的制备要求。