当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reversible Transformation between Bipolar Memory Switching and Bidirectional Threshold Switching in 2D Layered K-Birnessite Nanosheets.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-05-05 , DOI: 10.1021/acsami.0c04872
Meilin Tu 1 , Haipeng Lu 2 , Songwen Luo 1 , Hao Peng 3 , Shangdong Li 3 , Yizhen Ke 3 , Shuoguo Yuan 4 , Wen Huang 3 , Wenjing Jie 1 , Jianhua Hao 4
Affiliation  

Birnessite-related manganese dioxides (MnO2) have recently been studied owing to their diverse low-dimensional layered structures and potential applications in energy devices. The birnessite MnO2 possesses a layered structure with edge-shared MnO6 octahedra layer stacked with interlayer of cations. The unique layered structure may provide some distinct electrical properties for the 2D layered nanosheets. In this work, layered K-birnessite MnO2 samples are synthesized by a hydrothermal method. The resistive switching (RS) devices based on single K-birnessite MnO2 nanosheets are fabricated by transferring the nanosheets onto SiO2/Si substrates through a facile and feasible method of mechanical exfoliation. The device exhibits nonvolatile memory switching (MS) behaviors with high current ON/OFF ratio of ∼2 × 105. And more importantly, reversible transformation between the nonvolatile MS and volatile threshold switching (TS) can be achieved in the single layered nanosheet through tuning the magnitude of compliance current (Icc). To be more specific, a relatively high Icc (1 mA) can trigger the nonvolatile MS behaviors, while a relatively low Icc (≤100 μA) can generate volatile TS characteristics. This work not only demonstrates the memristor based on single birnessite-related MnO2 nanosheet, but also offers an insight into understanding the complex resistive switching types and relevant physical mechanisms of the 2D layered oxide nanosheets.

中文翻译:

二维分层K-水钠锰矿纳米片中双极性记忆开关与双向阈值开关之间的可逆转换。

与水钠锰矿有关的二氧化锰(MnO2)由于其多样的低维分层结构和在能源设备中的潜在应用而最近得到了研究。水钠锰矿MnO 2具有层状结构,其边缘共享的MnO 6八面体层堆叠有阳离子的中间层。独特的层状结构可以为2D层状纳米片提供一些独特的电性能。在这项工作中,通过水热法合成了层状钾水钠锰矿MnO2样品。通过一种简便可行的机械剥落方法,将纳米片转移到SiO2 / Si衬底上,从而制造出基于单个K-水钠锰矿MnO2纳米片的电阻转换(RS)器件。该器件具有大约2×105的高电流开/关比,具有非易失性存储器开关(MS)行为。更重要的是,通过调整顺应性电流(Icc)的大小,可以在单层纳米片中实现非易失性MS和挥发性阈值转换(TS)之间的可逆转换。更具体地说,较高的Icc(1 mA)可以触发非易失性MS行为,而较低的Icc(≤100μA)可以生成挥发性TS特性。这项工作不仅演示了基于与水钠锰矿相关的MnO2纳米片的忆阻器,而且还为了解2D层状氧化物纳米片的复杂电阻转换类型和相关物理机理提供了见识。相对较高的Icc(1 mA)可以触发非易失性MS行为,而相对较低的Icc(≤100μA)可以产生挥发性TS特性。这项工作不仅演示了基于与水钠锰矿相关的MnO2纳米片的忆阻器,而且还为了解2D层状氧化物纳米片的复杂电阻转换类型和相关物理机理提供了见识。相对较高的Icc(1 mA)可以触发非易失性MS行为,而相对较低的Icc(≤100μA)可以产生挥发性TS特性。这项工作不仅演示了基于与水钠锰矿相关的MnO2纳米片的忆阻器,而且还为了解2D层状氧化物纳米片的复杂电阻转换类型和相关物理机理提供了见识。
更新日期:2020-05-05
down
wechat
bug