Energy Storage Materials ( IF 18.9 ) Pub Date : 2020-05-04 , DOI: 10.1016/j.ensm.2020.04.027 Wanlin Wang , Zhe Hu , Zichao Yan , Jian Peng , Mingzhe Chen , Weihong Lai , Qin-Fen Gu , Shu-Lei Chou , Hua-Kun Liu , Shi-Xue Dou
Sodium iron hexacyanoferrate (NaFeHCF) has been considered as a potential cathode for sodium-ion batteries owing to its low-cost and easily prepared procedure. However, it is still challenging to achieve long cyclic stability and superior rate capability, and the sodium storage mechanism of sodium-rich NaFeHCF is still elusive. Herein, a sodium-rich NaFeHCF with rhombohedral structure is presented with excellent electrochemical performances within 2.0–4.2 V. The specific capacity of ~115 mA h g−1 is obtained by utilizing two plateaus around 2.9 and 4.06 V, respectively. Remarkable rate performance from 10 to 4000 mA g−1 and 1000 cycles with high capacity retention is achieved as well. Synchrotron powder X-ray diffraction (PXRD) and structural refinement reveals that sodium-ions occupy three different sites (interstitial, face and edge) in rhombohedral unit cell, which contribute different capacities on different plateaus during Na+ extractions. Moreover, the rhombohedral structure is well-maintained after long-term Na+ extractions/insertions and reversible phase transitions with small volume variation are observed through in-situ synchrotron PXRD. The kinetic properties of Na+ in rhombohedral unit cell are identified by ab-initio molecular dynamics method and density functional theory calculations, which indicate that Na+ transport on three-dimensional diffusion paths, thus enabling the outstanding rate performance of NaFeHCF.
中文翻译:
了解具有三个不同钠位置的菱面体六氰合铁酸高铁钠离子电池
六氰合铁酸铁钠(NaFeHCF)由于其低成本且易于制备的过程而被认为是钠离子电池的潜在阴极。然而,实现长周期稳定性和优异的倍率能力仍然具有挑战性,并且富钠的NaFeHCF的钠存储机制仍然难以捉摸。本文介绍了具有菱形结构的富含钠的NaFeHCF,在2.0-4.2 V范围内具有出色的电化学性能。通过分别利用2.9和4.06 V附近的两个平稳区获得〜115 mA h g -1的比容量。从10到4000 mA g -1的卓越速率性能并实现了1000个具有高容量保持率的循环。同步加速器粉末X射线衍射(PXRD)和结构细化显示,钠离子占据菱面体晶胞中的三个不同位置(间隙,面和边缘),在Na +提取过程中,它们在不同的高原上贡献不同的容量。此外,在长期Na +提取/插入后,通过原位同步加速器PXRD观察到菱形体的结构得到了很好的维护,并且观察到了体积变化小的可逆相变。通过从头算分子动力学方法和密度泛函理论计算,确定了菱形体单元格中Na +的动力学性质,这表明Na + 在三维扩散路径上迁移,从而使NaFeHCF具有出色的速率性能。