当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Characterizing Bismuth Doping of Colloidal Germanium Quantum Dots for Energy Conversion Applications
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-05-01 , DOI: 10.1021/acsanm.0c00709 Heather Renee Sully 1 , Katayoon Tabatabaei 2 , Kaitlin Hellier 3 , Kathryn A. Newton 2 , Zheng Ju 2 , Logan Knudson 3 , Shayan Zargar 3 , Minyuan Wang 2 , Susan M. Kauzlarich 2 , Frank Bridges 3 , Sue A. Carter 3
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-05-01 , DOI: 10.1021/acsanm.0c00709 Heather Renee Sully 1 , Katayoon Tabatabaei 2 , Kaitlin Hellier 3 , Kathryn A. Newton 2 , Zheng Ju 2 , Logan Knudson 3 , Shayan Zargar 3 , Minyuan Wang 2 , Susan M. Kauzlarich 2 , Frank Bridges 3 , Sue A. Carter 3
Affiliation
The numerous electronic and optoelectronic applications that rely on semiconductors require tuning their properties through doping. Germanium quantum dots (Ge QDs) were successfully doped with bismuth up to 1.5 mol %, which is not achievable in the bulk Ge system. The structures of oleylamine- and dodecanethiol-capped Ge QDs were probed with EXAFS, and the results are consistent with Bi dopants occupying surface lattice sites. Increasing the amount of Bi dopant from 0.50 to 1.5 mol % results in increasing disorder. In particular, the nearest-neighbor Bi–Ge bond length is much longer than the Ge–Ge bond length in Ge QDs. Oleylamine to dodecanethiol ligand exchange was shown to partially restore order in doped QDs. Transport measurements of the Bi-doped Ge QD thin films revealed that Bi doping leads to a significant increase in dark current and photocurrent. These results indicate that doping can provide a pathway for improving the performance of group IV quantum dots for energy conversion applications including photodiodes and photovoltaic cells.
中文翻译:
表征能量转换应用的胶态锗量子点的铋掺杂
依赖半导体的众多电子和光电应用都需要通过掺杂来调整其性能。锗量子点(Ge QDs)成功地掺杂了高达1.5 mol%的铋,这在块状Ge体系中是无法实现的。用EXAFS探测了油胺和十二烷硫醇封端的Ge QD的结构,结果与Bi掺杂剂占据了表面晶格位点一致。Bi掺杂剂的量从0.50%增加到1.5mol%导致无序性增加。特别是,最近邻的Bi-Ge键长比Ge QD中的Ge-Ge键长长得多。在掺杂的量子点中,油胺到十二烷硫醇配体的交换显示出部分恢复了顺序。Bi掺杂的Ge QD薄膜的传输测量结果表明,Bi掺杂导致暗电流和光电流显着增加。这些结果表明,掺杂可以为改善包括光电二极管和光伏电池在内的能量转换应用中的IV族量子点的性能提供一条途径。
更新日期:2020-06-26
中文翻译:
表征能量转换应用的胶态锗量子点的铋掺杂
依赖半导体的众多电子和光电应用都需要通过掺杂来调整其性能。锗量子点(Ge QDs)成功地掺杂了高达1.5 mol%的铋,这在块状Ge体系中是无法实现的。用EXAFS探测了油胺和十二烷硫醇封端的Ge QD的结构,结果与Bi掺杂剂占据了表面晶格位点一致。Bi掺杂剂的量从0.50%增加到1.5mol%导致无序性增加。特别是,最近邻的Bi-Ge键长比Ge QD中的Ge-Ge键长长得多。在掺杂的量子点中,油胺到十二烷硫醇配体的交换显示出部分恢复了顺序。Bi掺杂的Ge QD薄膜的传输测量结果表明,Bi掺杂导致暗电流和光电流显着增加。这些结果表明,掺杂可以为改善包括光电二极管和光伏电池在内的能量转换应用中的IV族量子点的性能提供一条途径。