当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays.
ACS Nano ( IF 15.8 ) Pub Date : 2020-04-30 , DOI: 10.1021/acsnano.0c02145
Nanjing Hao 1 , Pengzhan Liu 1 , Hunter Bachman 1 , Zhichao Pei 1 , Peiran Zhang 1 , Joseph Rufo 1 , Zeyu Wang 1 , Shuaiguo Zhao 1 , Tony Jun Huang 1
Affiliation  

The integration of acoustics and microfluidics (termed acoustofluidics) presents a frontier in the engineering of functional micro-/nanomaterials. Acoustofluidic techniques enable active and precise spatiotemporal control of matter, providing great potential for the design of advanced nanosystems with tunable material properties. In this work, we introduce an acoustofluidic approach for engineering multifunctional three-dimensional nanostructure arrays and demonstrate their potential in enrichment and biosensing applications. In particular, our acoustofluidic device integrates an acoustic transducer with a sharp-edge-based acoustofluidic reactor that enables uniform patterning of zinc oxide (ZnO) nanoarrays with customizable lengths, densities, diameters, and other properties. The resulting ZnO nanoarray-coated glass capillaries can rapidly and efficiently capture and enrich biomolecules with sizes ranging from a few nanometers to several hundred nanometers. In order to enable the detection of these biomolecules, silver (Ag) nanoparticles are deposited onto the ZnO nanoarrays, and the integrated ZnO-Ag capillary device functions as a label-free plasmonic biosensing system for surface-enhanced Raman spectroscopy (SERS) based detection of exosomes, DNA oligonucleotides, and E. Coli bacteria. The optical sensing enhancement of ZnO-Ag capillary is further validated through finite-difference time-domain (FDTD) simulations. These findings not only provide insights into the engineering of functional micro-/nanomaterials using acoustofluidics, but also shed light onto the development of portable microanalytical devices for point-of-care applications.

中文翻译:


声流体辅助多功能三维氧化锌纳米阵列工程。



声学和微流体学的集成(称为声流体学)代表了功能微/纳米材料工程的前沿。声流控技术能够对物质进行主动、精确的时空控制,为设计具有可调材料特性的先进纳米系统提供了巨大的潜力。在这项工作中,我们介绍了一种用于工程多功能三维纳米结构阵列的声流控方法,并展示了它们在富集和生物传感应用中的潜力。特别是,我们的声流控装置将声换能器与基于锐边的声流控反应器集成在一起,能够实现氧化锌 (ZnO) 纳米阵列的均匀图案化,并具有可定制的长度、密度、直径和其他属性。由此产生的氧化锌纳米阵列涂层玻璃毛细管可以快速有效地捕获和富集尺寸从几纳米到几百纳米的生物分子。为了能够检测这些生物分子,将银 (Ag) 纳米颗粒沉积在 ZnO 纳米阵列上,集成的 ZnO-Ag 毛细管装置充当无标记等离子体生物传感系统,用于基于表面增强拉曼光谱 (SERS) 的检测外泌体、DNA 寡核苷酸和大肠杆菌。通过时域有限差分 (FDTD) 模拟进一步验证了 ZnO-Ag 毛细管的光学传感增强功能。这些发现不仅为使用声流控技术的功能性微/纳米材料的工程提供了见解,而且还为用于现场护理应用的便携式微分析设备的开发提供了线索。
更新日期:2020-04-30
down
wechat
bug