当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Atomically Dispersed Pt Catalyst Anchored on an Fe/N/C Support for Enhanced Hydrogen Evolution Reaction
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-04-23 , DOI: 10.1021/acs.jpcc.0c01043 Haoyang Li 1, 2 , Guoliang Wang 1 , Fengru Zhang 1 , Liangliang Zou 1 , Zhiqing Zou 1 , Hui Yang 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2020-04-23 , DOI: 10.1021/acs.jpcc.0c01043 Haoyang Li 1, 2 , Guoliang Wang 1 , Fengru Zhang 1 , Liangliang Zou 1 , Zhiqing Zou 1 , Hui Yang 1
Affiliation
A highly efficient Pt-Fe/N/C catalyst with an ultralow Pt loading of 1.5 wt % is designed and synthesized based on a special iron and nitrogen co-doped carbon support (Fe/N/C). High-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure prove that the Pt is atomically dispersed in the Pt-Fe/N/C catalysts, leading to a high Pt utilization. The electrochemical results indicate that this Pt-Fe/N/C catalyst exhibits an excellent hydrogen evolution reaction (HER) performance, with a low overpotential of 51 mV at the current density of 10 mA cm–2 and a small Tafel slope of 48 mV dec–1, which are comparable with that of 20 wt % Pt/C. The enhanced performance can be ascribed to the intensive electron transfer between Pt atoms and the Fe and N co-doped substrate, resulting in an enhanced HER intrinsic activity. Furthermore, the Pt-Fe/N/C catalysts are applied as the cathode catalysts for water electrolysis, which exhibits an excellent performance of a low cell voltage of ∼1.8 V at 1 A cm–2 and a good stability for 100 h of continuous hydrogen production when the cathode Pt loading is reduced to only 4 μg cm–2. The study provides a general strategy to develop Pt atomically anchored electrocatalysts with low cost, high activity, and high stability.
中文翻译:
固定在Fe / N / C载体上的原子分散Pt催化剂,用于增强氢释放反应
基于特殊的铁和氮共掺杂碳载体(Fe / N / C),设计和合成了具有1.5 wt%超低Pt负载的高效Pt-Fe / N / C催化剂。高角度环形暗场扫描透射电子显微镜和扩展的X射线吸收精细结构证明Pt原子分散在Pt-Fe / N / C催化剂中,导致Pt利用率高。电化学结果表明,该Pt-Fe / N / C催化剂表现出优异的氢释放反应(HER)性能,在10 mA cm –2的电流密度下具有51 mV的低过电势和48 mV的小Tafel斜率dec –1,可与20 wt%的Pt / C相媲美。增强的性能可以归因于Pt原子与Fe和N共掺杂衬底之间的密集电子转移,从而导致增强了HER固有活性。此外,Pt-Fe / N / C催化剂被用作水电解的阴极催化剂,在1 A cm –2的电池电压低至约1.8 V时表现出优异的性能,并且连续100 h的稳定性良好当阴极Pt负载减少到仅4μgcm -2时,产生氢气。该研究提供了开发低成本,高活性和高稳定性的Pt原子锚定电催化剂的一般策略。
更新日期:2020-04-23
中文翻译:
固定在Fe / N / C载体上的原子分散Pt催化剂,用于增强氢释放反应
基于特殊的铁和氮共掺杂碳载体(Fe / N / C),设计和合成了具有1.5 wt%超低Pt负载的高效Pt-Fe / N / C催化剂。高角度环形暗场扫描透射电子显微镜和扩展的X射线吸收精细结构证明Pt原子分散在Pt-Fe / N / C催化剂中,导致Pt利用率高。电化学结果表明,该Pt-Fe / N / C催化剂表现出优异的氢释放反应(HER)性能,在10 mA cm –2的电流密度下具有51 mV的低过电势和48 mV的小Tafel斜率dec –1,可与20 wt%的Pt / C相媲美。增强的性能可以归因于Pt原子与Fe和N共掺杂衬底之间的密集电子转移,从而导致增强了HER固有活性。此外,Pt-Fe / N / C催化剂被用作水电解的阴极催化剂,在1 A cm –2的电池电压低至约1.8 V时表现出优异的性能,并且连续100 h的稳定性良好当阴极Pt负载减少到仅4μgcm -2时,产生氢气。该研究提供了开发低成本,高活性和高稳定性的Pt原子锚定电催化剂的一般策略。