Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controllable Synthesis of Peapod-like Sb@C and Corn-like C@Sb Nanotubes for Sodium Storage.
ACS Nano ( IF 15.8 ) Pub Date : 2020-04-23 , DOI: 10.1021/acsnano.0c00366
Kaixuan Yang 1, 2 , Jianfeng Tang 1, 2 , Yan Liu 2 , Ming Kong 2 , Bin Zhou 2 , Yongchen Shang 1 , Wen-Hua Zhang 2
ACS Nano ( IF 15.8 ) Pub Date : 2020-04-23 , DOI: 10.1021/acsnano.0c00366
Kaixuan Yang 1, 2 , Jianfeng Tang 1, 2 , Yan Liu 2 , Ming Kong 2 , Bin Zhou 2 , Yongchen Shang 1 , Wen-Hua Zhang 2
Affiliation
![]() |
Antimony (Sb) is regarded as an attractive anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity of 660 mAh g–1. Combining Sb with carbonaceous materials has been considered as an effective way to resolve the serious volume expansion issues. Sb/C composites mainly consist of two types, that is, Sb confined inside a carbon matrix and Sb deposited on the surface of a carbon matrix, and both have shown superior sodium storage performance. However, which structure is more beneficial for achieving high electrochemical performance is still unclear. In this work, peapod-like Sb@C and corn-like C@Sb nanotubes are synthesized via a nanoconfined galvanic replacement reaction and used as model materials for sodium storage to explore the above issue. When evaluated as anode materials for SIBs, the peapod-like Sb@C shows a higher rate capability and a significantly better long-term cycling stability compared to those of the corn-like C@Sb. Electrochemical analysis reveals that the peapod-like Sb@C exhibits faster Na+ and electron transport kinetics and higher proportions of surface capacitive contributions. These results demonstrate the structural superiority of the nanoconfined structure and provide valuable information for the rational design and construction of Sb-based anode materials for high-performance electrochemical energy storage.
中文翻译:
Peapod样Sb @ C和玉米样C @ Sb纳米管的可控合成用于储钠。
锑(Sb)由于具有660 mAh g –1的高理论容量,因此被认为是钠离子电池(SIB)的有吸引力的负极材料。将Sb与碳质材料结合已被认为是解决严重的体积膨胀问题的有效方法。Sb / C复合材料主要由两种类型组成,即,限制在碳基质内部的Sb和沉积在碳基质表面上的Sb,两者均显示出优异的钠存储性能。然而,还不清楚哪种结构对实现高电化学性能更有利。在这项工作中,豆荚状的Sb @ C和玉米状的C @ Sb纳米管通过纳米约束电流置换反应,并用作钠存储的模型材料来探讨上述问题。当评估为SIBs的阳极材料时,与玉米状C @ Sb相比,豆荚状Sb @ C显示出更高的倍率能力和显着更好的长期循环稳定性。电化学分析表明,豆荚状Sb @ C表现出更快的Na +和电子传输动力学以及更高比例的表面电容贡献。这些结果证明了纳米约束结构的结构优势,并为合理设计和构造用于高性能电化学储能的Sb基阳极材料提供了有价值的信息。
更新日期:2020-04-23
中文翻译:

Peapod样Sb @ C和玉米样C @ Sb纳米管的可控合成用于储钠。
锑(Sb)由于具有660 mAh g –1的高理论容量,因此被认为是钠离子电池(SIB)的有吸引力的负极材料。将Sb与碳质材料结合已被认为是解决严重的体积膨胀问题的有效方法。Sb / C复合材料主要由两种类型组成,即,限制在碳基质内部的Sb和沉积在碳基质表面上的Sb,两者均显示出优异的钠存储性能。然而,还不清楚哪种结构对实现高电化学性能更有利。在这项工作中,豆荚状的Sb @ C和玉米状的C @ Sb纳米管通过纳米约束电流置换反应,并用作钠存储的模型材料来探讨上述问题。当评估为SIBs的阳极材料时,与玉米状C @ Sb相比,豆荚状Sb @ C显示出更高的倍率能力和显着更好的长期循环稳定性。电化学分析表明,豆荚状Sb @ C表现出更快的Na +和电子传输动力学以及更高比例的表面电容贡献。这些结果证明了纳米约束结构的结构优势,并为合理设计和构造用于高性能电化学储能的Sb基阳极材料提供了有价值的信息。