当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical Tolerance of Cascade Bioreactions via Adaptive Curvature Engineering for Epidermal Bioelectronics.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-04-22 , DOI: 10.1002/adma.202000991
Ting Wang 1 , Qun-Li Lei 2 , Ming Wang 1 , Guoying Deng 3 , Le Yang 4 , Xijian Liu 1 , Chunlin Li 3 , Qi Wang 3 , Zhihua Liu 1 , Jianwu Wang 1 , Zequn Cui 1 , Kevin Goldio Utama 1 , Ran Ni 2 , Xiaodong Chen 1
Affiliation  

Epidermal bioelectronics that can monitor human health status non‐invasively and in real time are core to wearable healthcare equipment. Achieving mechanically tolerant surface bioreactions that convert biochemical information to detectable signals is crucial for obtaining high sensing fidelity. In this work, by combining simulations and experiments, a typical epidermal biosensor system is investigated based on a redox enzyme cascade reaction (RECR) comprising glucose oxidase/lactate oxidase enzymes and Prussian blue nanoparticles. Simulations reveal that strain‐induced change in surface reactant flux is the key to the performance drop in traditional flat bioelectrodes. In contrast, wavy bioelectrodes capable of curvature adaptation maintain the reactant flux under strain, which preserves sensing fidelity. This rationale is experimentally proven by bioelectrodes with flat/wavy geometry under both static strain and dynamic stretching. When exposed to 50% strain, the signal fluctuations for wavy bioelectrodes are only 7.0% (4.9%) in detecting glucose (lactate), which are significantly lower than the 40.3% (51.8%) in flat bioelectrodes. Based on this wavy bioelectrode, a stable human epidermal metabolite biosensor insensitive to human gestures is further demonstrated. This mechanically tolerant biosensor based on adaptive curvature engineering provides a reliable bio/chemical‐information monitoring platform for soft healthcare bioelectronics.

中文翻译:

通过表皮生物电子学的自适应曲率工程实现级联生物反应的机械耐受性。

可以无创地实时监测人类健康状况的表皮生物电子学是可穿戴医疗设备的核心。实现将生物化学信息转换为可检测信号的机械耐受表面生物反应,对于获得高感测保真度至关重要。在这项工作中,通过结合模拟和实验,基于氧化还原酶级联反应(RECR)研究了典型的表皮生物传感器系统,该氧化还原酶级联反应包括葡萄糖氧化酶/乳酸氧化酶和普鲁士蓝纳米颗粒。仿真表明,应变诱导的表面反应物通量变化是传统平板生物电极性能下降的关键。相反,能够曲率适应的波浪形生物电极可在应变下保持反应物通量,从而保持传感保真度。该原理已通过具有平坦/波浪形几何形状的生物电极在静态应变和动态拉伸下的实验证明。当暴露于50%的应变下时,波浪形生物电极在检测葡萄糖(乳酸)中的信号波动仅为7.0%(4.9%),大大低于平面生物电极中的40.3%(51.8%)。基于这种波浪形生物电极,进一步证明了对人的手势不敏感的稳定的人表皮代谢物生物传感器。这种基于自适应曲率工程的机械耐受生物传感器为软医疗生物电子学提供了可靠的生物/化学信息监测平台。9%)检测葡萄糖(乳酸),这明显低于平板生物电极中的40.3%(51.8%)。基于这种波浪形生物电极,进一步证明了对人的手势不敏感的稳定的人表皮代谢物生物传感器。这种基于自适应曲率工程的机械耐受生物传感器为软医疗生物电子学提供了可靠的生物/化学信息监测平台。9%)检测葡萄糖(乳酸),这明显低于平板生物电极中的40.3%(51.8%)。基于这种波浪形生物电极,进一步证明了对人的手势不敏感的稳定的人表皮代谢物生物传感器。这种基于自适应曲率工程的机械耐受生物传感器为软医疗生物电子学提供了可靠的生物/化学信息监测平台。
更新日期:2020-04-22
down
wechat
bug