当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Role of Extracellular Polymeric Substances in Microbial Reduction of Arsenate to Arsenite by Escherichia coli and Bacillus subtilis.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-05-05 , DOI: 10.1021/acs.est.0c01186 Xinwei Zhou 1 , Fuxing Kang 2 , Xiaolei Qu 1 , Heyun Fu 1 , Pedro J J Alvarez 3 , Shu Tao 4 , Dongqiang Zhu 1, 4
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-05-05 , DOI: 10.1021/acs.est.0c01186 Xinwei Zhou 1 , Fuxing Kang 2 , Xiaolei Qu 1 , Heyun Fu 1 , Pedro J J Alvarez 3 , Shu Tao 4 , Dongqiang Zhu 1, 4
Affiliation
We show that arsenate can be readily reduced to arsenite on cell surfaces of common bacteria (E. coli or B. subtilis) or in aqueous dissolved extracellular polymeric substances (EPS) extracted from different microorganisms (E. coli, B. subtilis, P. chrysosporium, D. gigas, and a natural biofilm) in the absence of exogenous electron donors. The efficiency of arsenate reduction by E. coli after a 7-h incubation was only moderately reduced from 51.3% to 32.7% after knocking out the arsenic resistance genes (arsB and arsC). Most (>97%) of the reduced arsenite was present outside the bacterial cells, including for the E. coli blocked mutant lacking arsB and arsC. Thus, extracellular processes dominated arsenate reduction. Arsenate reduction was facilitated by removing EPS attached to E. coli or B. subtilis, which was attributed to enhanced access to reduced extracellular cytochromes. This highlights the role of EPS as a permeability barrier to arsenate reduction. Fourier-transform infrared (FTIR) combined with other chemical analyses implicated some low-molecular weight (<3 kDa) molecules as electron donors (reducing saccharides) and electron transfer mediators (quinones) in arsenate reduction by dissolved EPS alone. These results indicate that EPS act as both reducing agent and permeability barrier for access to reduced biomolecules in bacterial reduction of arsenate.
中文翻译:
胞外聚合物在大肠杆菌和枯草芽孢杆菌对微生物的砷还原为亚砷酸盐的作用。
我们表明,砷酸盐可以很容易地还原为常见细菌(大肠杆菌或枯草芽孢杆菌)的细胞表面上或从不同微生物(大肠杆菌,枯草芽孢杆菌,P。 chrysosporium,D。gigas和天然生物膜)在没有外源电子供体的情况下。敲除砷抗性基因(arsB和arsC)后,经过7小时孵育后,大肠杆菌对砷酸盐的还原效率仅从51.3%适度降低至32.7%。大部分(> 97%)还原的亚砷酸盐存在于细菌细胞外部,包括大肠杆菌封闭的缺少arsB和arsC的突变体。因此,细胞外过程主导了砷酸盐的还原。去除附着在大肠杆菌或枯草芽孢杆菌上的EPS有助于减少砷酸盐,这归因于增加了对减少的细胞外细胞色素的获取。这突出了EPS作为降低砷含量的渗透性屏障的作用。傅里叶变换红外(FTIR)与其他化学分析相结合,表明某些低分子量(<3 kDa)分子可通过单独溶解的EPS来作为砷的还原体中的电子供体(还原糖)和电子传递介质(醌)。这些结果表明,EPS既可作为还原剂,又可作为通透性屏障,在砷酸盐细菌还原中获得还原的生物分子。3 kDa)分子作为电子供体(还原糖)和电子转移介体(醌),仅通过溶解的EPS即可降低砷酸盐的含量。这些结果表明,EPS既可作为还原剂,又可作为通透性屏障,用于砷酸盐细菌还原中获得还原的生物分子。3 kDa)分子作为电子供体(还原糖)和电子转移介体(醌),仅通过溶解的EPS即可降低砷酸盐的含量。这些结果表明,EPS既可作为还原剂,又可作为通透性屏障,在砷酸盐细菌还原中获得还原的生物分子。
更新日期:2020-04-21
中文翻译:
胞外聚合物在大肠杆菌和枯草芽孢杆菌对微生物的砷还原为亚砷酸盐的作用。
我们表明,砷酸盐可以很容易地还原为常见细菌(大肠杆菌或枯草芽孢杆菌)的细胞表面上或从不同微生物(大肠杆菌,枯草芽孢杆菌,P。 chrysosporium,D。gigas和天然生物膜)在没有外源电子供体的情况下。敲除砷抗性基因(arsB和arsC)后,经过7小时孵育后,大肠杆菌对砷酸盐的还原效率仅从51.3%适度降低至32.7%。大部分(> 97%)还原的亚砷酸盐存在于细菌细胞外部,包括大肠杆菌封闭的缺少arsB和arsC的突变体。因此,细胞外过程主导了砷酸盐的还原。去除附着在大肠杆菌或枯草芽孢杆菌上的EPS有助于减少砷酸盐,这归因于增加了对减少的细胞外细胞色素的获取。这突出了EPS作为降低砷含量的渗透性屏障的作用。傅里叶变换红外(FTIR)与其他化学分析相结合,表明某些低分子量(<3 kDa)分子可通过单独溶解的EPS来作为砷的还原体中的电子供体(还原糖)和电子传递介质(醌)。这些结果表明,EPS既可作为还原剂,又可作为通透性屏障,在砷酸盐细菌还原中获得还原的生物分子。3 kDa)分子作为电子供体(还原糖)和电子转移介体(醌),仅通过溶解的EPS即可降低砷酸盐的含量。这些结果表明,EPS既可作为还原剂,又可作为通透性屏障,用于砷酸盐细菌还原中获得还原的生物分子。3 kDa)分子作为电子供体(还原糖)和电子转移介体(醌),仅通过溶解的EPS即可降低砷酸盐的含量。这些结果表明,EPS既可作为还原剂,又可作为通透性屏障,在砷酸盐细菌还原中获得还原的生物分子。