当前位置:
X-MOL 学术
›
Mol. Pharmaceutics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dissipative Particle Dynamics Aided Design of Drug Delivery Systems: A Review.
Molecular Pharmaceutics ( IF 4.5 ) Pub Date : 2020-04-21 , DOI: 10.1021/acs.molpharmaceut.0c00175 Yun Hao Feng 1, 2 , Xiao Peng Zhang 1, 2 , Ze Qiang Zhao 1, 2 , Xin Dong Guo 1, 2
Molecular Pharmaceutics ( IF 4.5 ) Pub Date : 2020-04-21 , DOI: 10.1021/acs.molpharmaceut.0c00175 Yun Hao Feng 1, 2 , Xiao Peng Zhang 1, 2 , Ze Qiang Zhao 1, 2 , Xin Dong Guo 1, 2
Affiliation
A nanocarrier drug delivery system, effectively assisting to improve the solubility, bioavailability, and targeting of drugs in the human body, is a crucial means for treating cancer and other diseases. However, drug carriers usually possess multiple components and complex microstructures, and studies on the formation mechanism and internal structural details of nanocarriers are still incomplete by experimental methods. In order to overcome this adversity, the dissipative particle dynamics (DPD) simulation has been widely used owing to its unique simulation time-space scale and satisfying computing efficiency. In the past decades, more and more kinds of complex nanocarriers with various structures have been successfully characterized, and influencing factors in mounting numbers have also been parametrized. Not only emphasizing on the self-assembly structure of nanocarriers, but the application area of DPD simulation has also become a complete system covering from the synthesis and preparation to interaction with the biomembrane. This article reviews the application of DPD simulations in drug delivery systems. We have established the connection between existing studies and proposed some outlooks for the further combination between DPD simulation and the design of a drug delivery system.
中文翻译:
耗散粒子动力学辅助药物输送系统设计:综述。
纳米载体药物递送系统有效地帮助改善药物在人体中的溶解度,生物利用度和靶向性,是治疗癌症和其他疾病的重要手段。然而,药物载体通常具有多种成分和复杂的微观结构,通过实验方法对纳米载体的形成机理和内部结构细节的研究仍不完善。为了克服这种逆境,耗散粒子动力学(DPD)模拟由于其独特的时空尺度和令人满意的计算效率而被广泛使用。在过去的几十年中,已经成功地表征了越来越多的具有各种结构的复杂纳米载体,并且已经对安装数量的影响因素进行了参数化。不仅着重于纳米载体的自组装结构,DPD模拟的应用领域也已成为一个完整的系统,涵盖了从合成,制备到与生物膜的相互作用。本文回顾了DPD模拟在药物输送系统中的应用。我们已经建立了现有研究之间的联系,并对DPD模拟与药物输送系统设计之间的进一步结合提出了一些展望。
更新日期:2020-04-21
中文翻译:
耗散粒子动力学辅助药物输送系统设计:综述。
纳米载体药物递送系统有效地帮助改善药物在人体中的溶解度,生物利用度和靶向性,是治疗癌症和其他疾病的重要手段。然而,药物载体通常具有多种成分和复杂的微观结构,通过实验方法对纳米载体的形成机理和内部结构细节的研究仍不完善。为了克服这种逆境,耗散粒子动力学(DPD)模拟由于其独特的时空尺度和令人满意的计算效率而被广泛使用。在过去的几十年中,已经成功地表征了越来越多的具有各种结构的复杂纳米载体,并且已经对安装数量的影响因素进行了参数化。不仅着重于纳米载体的自组装结构,DPD模拟的应用领域也已成为一个完整的系统,涵盖了从合成,制备到与生物膜的相互作用。本文回顾了DPD模拟在药物输送系统中的应用。我们已经建立了现有研究之间的联系,并对DPD模拟与药物输送系统设计之间的进一步结合提出了一些展望。