Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchical 3D Oxygenated Cobalt Molybdenum Selenide Nanosheets as Robust Trifunctional Catalyst for Water Splitting and Zinc-Air Batteries.
Small ( IF 13.0 ) Pub Date : 2020-04-20 , DOI: 10.1002/smll.202000797 Sampath Prabhakaran 1 , Jayaraman Balamurugan 1 , Nam Hoon Kim 1 , Joong Hee Lee 1, 2
Small ( IF 13.0 ) Pub Date : 2020-04-20 , DOI: 10.1002/smll.202000797 Sampath Prabhakaran 1 , Jayaraman Balamurugan 1 , Nam Hoon Kim 1 , Joong Hee Lee 1, 2
Affiliation
The development of hierarchical nanostructures with highly active and durable multifunctional catalysts has a new significance in the context of new energy technologies of water splitting and metal-air batteries. Herein, a strategy is demonstrated to construct a 3D hierarchical oxygenated cobalt molybdenum selenide (O-Co1- x Mox Se2 ) series with attractive nanoarchitectures, which are fabricated by a simple and cost-effective hydrothermal process followed by an exclusive ion-exchange process. Owing to its highly electroactive sites with numerous nanoporous networks and plentiful oxygen vacancies, the optimal O-Co0.5 Mo0.5 Se2 could catalyze the hydrogen evolution reaction and oxygen evolution reaction effectively with a low overpotential of ≈102 and 189 mV, at a current density of 10 mA cm-2 , respectively, and exceptional durability. Most importantly, the O-Co0.5 Mo0.5 Se2 ||O-Co0.5 Mo0.5 Se2 water splitting device only entails a voltage of ≈1.53 V at a current density of 10 mA cm-2 , which is much better than benchmark Pt/C||RuO2 (≈1.56 V). Furthermore, O-Co0.5 Mo0.5 Se2 air cathode-based zinc-air batteries exhibit an excellent power density of 120.28 mW cm-2 and exceptional cycling stability for 60 h, superior to those of state-of-art Pt/C+RuO2 pair-based zinc-air batteries. The present study provides a strategy to design hierarchical 3D oxygenated bimetallic selenide-based multifunctional catalysts for energy conversion and storage systems.
中文翻译:
分层3D氧化钴硒化钼钼纳米片,作为用于水分解和锌空气电池的稳健三功能催化剂。
在水分解和金属空气电池的新能源技术的背景下,具有高活性和耐用性的多功能催化剂的分层纳米结构的开发具有新的意义。在本文中,策略被证明可以构建具有吸引力的纳米结构的3D分层氧化钴硒化钼钴(O-Co1- x Mox Se2)系列,该系列是通过简单且经济高效的水热工艺,然后进行专有的离子交换工艺制造的。最佳的O-Co0.5 Mo0.5 Se2由于具有高度的电活性位点以及大量的纳米孔网络和大量的氧空位,因此可以在≈102和189 mV的低超电势下有效地催化氢释放反应和氧释放反应。电流密度分别为10 mA cm-2和出色的耐久性。最重要的是,O-Co0.5 Mo0.5 Se2 || O-Co0.5 Mo0.5 Se2分水装置仅在10 mA cm-2的电流密度下仅需要≈1.53V的电压,这要好得多比基准Pt / C || RuO2(≈1.56V)高。此外,O-Co0.5 Mo0.5 Se2空气阴极型锌-空气电池具有120.28 mW cm-2的出色功率密度和60小时的出色循环稳定性,优于最先进的Pt / C + RuO2对的锌空气电池。本研究提供了一种策略,用于设计用于能量转换和存储系统的分层3D氧化双金属硒化物基多功能催化剂。5 Se2空气阴极型锌空气电池具有120.28 mW cm-2的出色功率密度和60小时的出色循环稳定性,优于最先进的Pt / C + RuO2对锌空气电池。本研究提供了一种策略,用于设计用于能量转换和存储系统的分层3D氧化双金属硒化物基多功能催化剂。5 Se2空气阴极型锌空气电池具有120.28 mW cm-2的出色功率密度和60小时的出色循环稳定性,优于最先进的Pt / C + RuO2对锌空气电池。本研究提供了一种策略,用于设计用于能量转换和存储系统的分层3D氧化双金属硒化物基多功能催化剂。
更新日期:2020-04-20
中文翻译:
分层3D氧化钴硒化钼钼纳米片,作为用于水分解和锌空气电池的稳健三功能催化剂。
在水分解和金属空气电池的新能源技术的背景下,具有高活性和耐用性的多功能催化剂的分层纳米结构的开发具有新的意义。在本文中,策略被证明可以构建具有吸引力的纳米结构的3D分层氧化钴硒化钼钴(O-Co1- x Mox Se2)系列,该系列是通过简单且经济高效的水热工艺,然后进行专有的离子交换工艺制造的。最佳的O-Co0.5 Mo0.5 Se2由于具有高度的电活性位点以及大量的纳米孔网络和大量的氧空位,因此可以在≈102和189 mV的低超电势下有效地催化氢释放反应和氧释放反应。电流密度分别为10 mA cm-2和出色的耐久性。最重要的是,O-Co0.5 Mo0.5 Se2 || O-Co0.5 Mo0.5 Se2分水装置仅在10 mA cm-2的电流密度下仅需要≈1.53V的电压,这要好得多比基准Pt / C || RuO2(≈1.56V)高。此外,O-Co0.5 Mo0.5 Se2空气阴极型锌-空气电池具有120.28 mW cm-2的出色功率密度和60小时的出色循环稳定性,优于最先进的Pt / C + RuO2对的锌空气电池。本研究提供了一种策略,用于设计用于能量转换和存储系统的分层3D氧化双金属硒化物基多功能催化剂。5 Se2空气阴极型锌空气电池具有120.28 mW cm-2的出色功率密度和60小时的出色循环稳定性,优于最先进的Pt / C + RuO2对锌空气电池。本研究提供了一种策略,用于设计用于能量转换和存储系统的分层3D氧化双金属硒化物基多功能催化剂。5 Se2空气阴极型锌空气电池具有120.28 mW cm-2的出色功率密度和60小时的出色循环稳定性,优于最先进的Pt / C + RuO2对锌空气电池。本研究提供了一种策略,用于设计用于能量转换和存储系统的分层3D氧化双金属硒化物基多功能催化剂。