当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved Electrochemical Performances and Magnetic Properties of Lithium Iron Phosphate with In Situ Fe2P Surface Modification by the Control of the Reductive Gas Flow Rate
Applied Surface Science ( IF 6.3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.apsusc.2020.146389
Wenyu Yang , Lin Zhang , Yue Chen , Hurong Yao , Jiaxin Li , Yingbin Lin , Zhigao Huang

Abstract The growth of Fe2P was successfully regulated in the inner surface of LiFePO4 by the control of the reductive gas flow rate. The as-synthesized composites were characterized by XRD, XPS, TEM, and magnetic measurements. The experimental results indicated that the Fe2P content of the samples increases with the increasing reductive gas flow rate. Moreover, due to the effective conductive path from Fe2P, it was found that the moderate modified-Fe2P LiFePO4 sample had an excellent rate performance and cyclic stability under a high current density. It was also confirmed that LiFePO4 decorated with a moderate amount of Fe2P shows a lower charge transfer resistance and higher Li+ diffusion coefficient than that of the other samples examined in our investigation. However, excessive Fe2P modification had a negative effect on the enhancement of the electrochemical performance, which was mainly attributed to the large amount of available Fe2P; its non-electrochemical activity sacrifices the specific capacity of the LiFePO4 material. This work provides a novel method to obtain high performance by controlling the gas flow rate to optimize the amount of conducting Fe2P. Furthermore, the potential relationship between the LiFePO4 material’s electrochemical and magnetic properties was investigated. It was believed that the magnetic moment is a simple and sensitive method for detecting the electrochemical performances of LiFePO4 electrode materials.

中文翻译:

通过控制还原气体流速改善原位 Fe2P 表面改性磷酸铁锂的电化学性能和磁性能

摘要 通过控制还原气体流速,成功地调控了 LiFePO4 内表面 Fe2P 的生长。合成的复合材料通过 XRD、XPS、TEM 和磁性测量进行表征。实验结果表明,样品的Fe2P含量随着还原气体流速的增加而增加。此外,由于 Fe2P 的有效导电路径,发现适度改性的 Fe2P LiFePO4 样品在高电流密度下具有优异的倍率性能和循环稳定性。还证实,与我们调查中检查的其他样品相比,用适量 Fe2P 装饰的 LiFePO4 显示出更低的电荷转移电阻和更高的 Li+ 扩散系数。然而,过度的Fe2P改性对电化学性能的提高有负面影响,主要是由于大量的可用Fe2P;它的非电化学活性牺牲了 LiFePO4 材料的比容量。这项工作提供了一种通过控制气体流速来优化导电 Fe2P 量来获得高性能的新方法。此外,还研究了 LiFePO4 材料的电化学和磁性能之间的潜在关系。人们认为,磁矩是一种检测 LiFePO4 电极材料电化学性能的简单而灵敏的方法。它的非电化学活性牺牲了 LiFePO4 材料的比容量。这项工作提供了一种通过控制气体流速来优化导电 Fe2P 量来获得高性能的新方法。此外,还研究了 LiFePO4 材料的电化学和磁性能之间的潜在关系。人们认为,磁矩是一种检测 LiFePO4 电极材料电化学性能的简单而灵敏的方法。它的非电化学活性牺牲了 LiFePO4 材料的比容量。这项工作提供了一种通过控制气体流速来优化导电 Fe2P 量来获得高性能的新方法。此外,还研究了 LiFePO4 材料的电化学和磁性能之间的潜在关系。人们认为,磁矩是一种检测 LiFePO4 电极材料电化学性能的简单而灵敏的方法。
更新日期:2020-08-01
down
wechat
bug