当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics
Advanced Materials ( IF 27.4 ) Pub Date : 2020-04-20 , DOI: 10.1002/adma.202000619 Dawei Zhao 1, 2 , Ying Zhu 1 , Wanke Cheng 1 , Wenshuai Chen 1 , Yiqiang Wu 3 , Haipeng Yu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2020-04-20 , DOI: 10.1002/adma.202000619 Dawei Zhao 1, 2 , Ying Zhu 1 , Wanke Cheng 1 , Wenshuai Chen 1 , Yiqiang Wu 3 , Haipeng Yu 1
Affiliation
There is currently enormous and growing demand for flexible electronics for personalized mobile equipment, human–machine interface units, wearable medical-healthcare systems, and bionic intelligent robots. Cellulose is a well-known natural biopolymer that has multiple advantages including low cost, renewability, easy processability, and biodegradability, as well as appealing mechanical performance, dielectricity, piezoelectricity, and convertibility. Because of its multiple merits, cellulose is frequently used as a substrate, binder, dielectric layer, gel electrolyte, and derived carbon material for flexible electronic devices. Leveraging the advantages of cellulose to design advanced functional materials will have a significant impact on portable intelligent electronics. Herein, the unique molecular structure and nanostructures (nanocrystals, nanofibers, nanosheets, etc.) of cellulose are briefly introduced, the structure–property–application relationships of cellulosic materials summarized, and the processing technologies for fabricating cellulose-based flexible electronics considered. The focus then turns to the recent advances of cellulose-based functional materials toward emerging intelligent electronic devices including flexible sensors, optoelectronic devices, field-effect transistors, nanogenerators, electrochemical energy storage devices, biomimetic electronic skins, and biological detection devices. Finally, an outlook of the potential challenges and future prospects for developing cellulose-based wearable devices and bioelectronic systems is presented.
中文翻译:
用于新兴智能电子产品的纤维素基柔性功能材料
目前,个性化移动设备、人机界面单元、可穿戴医疗保健系统和仿生智能机器人对柔性电子产品的需求巨大且不断增长。纤维素是一种众所周知的天然生物聚合物,具有成本低、可再生、易加工、可生物降解等优点,以及良好的机械性能、介电性、压电性和可转换性。由于其多种优点,纤维素经常用作柔性电子器件的基材、粘合剂、介电层、凝胶电解质和衍生碳材料。利用纤维素的优势设计先进功能材料将对便携式智能电子产品产生重大影响。本文简要介绍了纤维素独特的分子结构和纳米结构(纳米晶体、纳米纤维、纳米片等),总结了纤维素材料的结构-性能-应用关系,并考虑了纤维素基柔性电子器件的加工技术。然后重点转向基于纤维素的功能材料在新兴智能电子设备方面的最新进展,包括柔性传感器、光电器件、场效应晶体管、纳米发电机、电化学储能设备、仿生电子皮肤和生物检测设备。最后,展望了开发基于纤维素的可穿戴设备和生物电子系统的潜在挑战和未来前景。
更新日期:2020-04-20
中文翻译:
用于新兴智能电子产品的纤维素基柔性功能材料
目前,个性化移动设备、人机界面单元、可穿戴医疗保健系统和仿生智能机器人对柔性电子产品的需求巨大且不断增长。纤维素是一种众所周知的天然生物聚合物,具有成本低、可再生、易加工、可生物降解等优点,以及良好的机械性能、介电性、压电性和可转换性。由于其多种优点,纤维素经常用作柔性电子器件的基材、粘合剂、介电层、凝胶电解质和衍生碳材料。利用纤维素的优势设计先进功能材料将对便携式智能电子产品产生重大影响。本文简要介绍了纤维素独特的分子结构和纳米结构(纳米晶体、纳米纤维、纳米片等),总结了纤维素材料的结构-性能-应用关系,并考虑了纤维素基柔性电子器件的加工技术。然后重点转向基于纤维素的功能材料在新兴智能电子设备方面的最新进展,包括柔性传感器、光电器件、场效应晶体管、纳米发电机、电化学储能设备、仿生电子皮肤和生物检测设备。最后,展望了开发基于纤维素的可穿戴设备和生物电子系统的潜在挑战和未来前景。