当前位置: X-MOL 学术Geochem. Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Frontiers and advances in environmental soil chemistry: a special issue in honor of Prof. Donald L. Sparks.
Geochemical Transactions ( IF 0.9 ) Pub Date : 2020-04-17 , DOI: 10.1186/s12932-020-00070-y
Young-Shin Jun 1 , Mengqiang Zhu 2 , Derek Peak 3
Affiliation  

figurea

Professor Donald Sparks

This Special Issue of Geochemical Transactions is dedicated to Professor Donald L. Sparks, the S. Hallock du Pont Chair in the Department of Plant and Soil Sciences, and the Director of the Delaware Environmental Institute, at the University of Delaware (UD), in celebration and honor of his life-long research interests and achievements in environmental soil chemistry. Dr. Sparks is the recipient of the 2015 American Chemical Society’s Geochemistry Division Medal for his highly influential and transformative work in soil and environmental geochemistry, his outstanding record as an educator and mentor, and his service to the geochemical community. Dr. Sparks received his B.S. in Agronomy in 1975 and M.S. in Soil Science in 1976, both from the University of Kentucky, before he obtained his Ph.D. in Soil Science in 1979 from Virginia Polytechnic Institute and State University. Dr. Sparks has received numerous awards, including UD’s Francis Alison Award, the Liebig Medal from the International Union of Soil Sciences, the U.S. Department of Agriculture’s Sterling Hendricks medal, the Northeast Association of Graduate Schools Geoffrey Marshall Mentoring Award, the Soil Science Research Award, the M.L. and Chrystie M. Jackson Soil Science Award, and the American Society of Agronomy’s Environmental Quality Award.

Over the past 30 years, Dr. Sparks’ research has fundamentally transformed our understanding of the fate of toxic metals and plant nutrients in soils, and of chemical reactions at solid-water interfaces. His research utilizes synchrotron X-ray and other spectroscopic techniques to determine the forms of the metals and nutrients in the soil at the molecular scale, revealing how they interact with mineral surfaces and accumulate in plants. Such information determines the mobility, toxicity, and bioavailability of contaminants in the soil and is useful in developing effective strategies for soil remediation. As we began to plan this honorary Special Issue, we invited experts and colleagues who share this scientific sphere with Dr. Sparks. The resulting Special Issue highlights important challenges in environmental geochemistry and soil chemistry and introduces current advances in these areas. We have also brought together a series of research articles exemplifying recent developments in state-of-the-art experimental and computational approaches to understanding mineral–water interfaces.

The Special Issue starts with Dr. Sparks’ feature article, which introduces the increasing importance of soil chemistry in climate change and in critical soil interactions with nutrients and emerging organic contaminants such as antibiotics, hormones, and per- and polyfluoroalkyl substances (PFAS). Dr. Sparks has provided future research directions as well as challenges and opportunity in environmental soil chemistry [1]. In soils, two important reactive elements are iron and manganese (hydr)oxides. The contributed articles provide interesting examples of these highly reactive minerals in soils and highlight the importance of understanding them at the molecular scale: Voegelin et al. examine the reductive dissolution kinetics of an environmentally relevant set of arsenate-containing Fe(III)-precipitates whose structure changes as a function of phosphate (P) and silicate (Si) content in its structure [2]. Schaefer et al., characterize the reaction of aqueous Fe(II) with pyrolusite (β-MnO2), using electron microscopy, X-ray diffraction, aqueous Fe and Mn analyses, and 57Fe Mössbauer spectroscopy, and describe the continuous redox chemistry between Fe(II) and Mn/Fe oxides [3]. By experimental analysis and density functional theory (DFT) calculations, Kubicki et al. simulate interactions between chromate and a ferrihydrate nanoparticle [4]. Then, several articles by Sowers et al. [5], Stuckey et al. [6], Sundman et al. [7], and Zhu et al. [8] discuss how iron and manganese (hydr)oxides interact with organic compounds undergoing redox reactions and dissolution. In addition, Cade-Menun et al. [9] and Hamilton et al. [10] investigate the fate and transport of phosphate as a nutrient in soil systems by using inductively coupled plasma spectroscopy, P-nuclear magnetic resonance, and X-ray absorption spectroscopy. Strawn et al. provide a nice review that discusses phosphorus and arsenic in soil using four case studies [11]. Nickel, zinc, and copper in soils are trace transition metals and critical nutrients as well. Using microfocused X-ray fluorescence, diffraction, and absorption spectroscopy, Siebecker et al. report natural speciation of nickel in serpentine topsoils [12] and Gou et al. report a competitive adsorption of nickel and zinc on aluminum oxides [13]. Fan et al. measure the Wien effect in colloidal suspensions containing cadmium and zinc to determine binding energies associated with cadmium and zinc ion adsorption in clay-containing soils [14]. In addition to macroscale colloids, soil contains many nanosized pore spaces. Knight et al. discuss nanoscale confinement effects on copper ion adsorption on mesoporous silica and highlight the important unique nanoscale nature of pores in soil particulates [15]. Furthermore, engineered nanomaterials can also enter natural soil environments and become incidental soil components, but their impacts on the environment are poorly known. To pursue this aspect, Zeng et al., study CuO nanoparticles and their catalytic behavior in the presence of arsenic, using in situ quick scanning X-ray absorption spectroscopy (Q-XAS) analysis [16]. Another example incidental nanoparticle is spinel, Zn-bearing magnetite (Zn0.5Fe2.5O4) and minium (Pb3O4), that were found in proximity to a former Cu-smelter in Timmins, Ontario, Canada [17]. The Special Issue covers a wide variety of transition metals, organic matter, nutrients, toxins, and soil components and introduces studies enabled by the most advanced X-ray techniques, NMR, and high-resolution transmission electron microscopy. The exciting discussions provide macro to nanometer-scale insights into soil systems and exemplify the topics that Dr. Sparks has pursued throughout his career.

Thinking back to our first solicitations for the Special Issue, we were impressed by the enthusiasm from the geochemical society, which reflects Dr. Sparks’ dedication and leadership in environmental soil chemistry. We are grateful to have this support from our colleagues and excited to share this Special Issue. To facilitate its dissemination, Mr. Samuel Winthrop and Mr. Jan Margulies, Journal Development Editors of Geochemical Transactions, and Dr. Sherestha Saini, Senior Editor of Springer Nature’s Environmental Sciences Journals, have kindly helped in handling the manuscripts. We hope that this Special Issue will reach the broader environmental soil geochemistry community. Lastly, thank you, Dr. Sparks, for your leadership in environmental soil chemistry and for inspiring many of us.

  1. 1.

    Sparks DL (2020) A golden period for environmental soil chemistry. Geochem Trans 21:5. https://doi.org/10.1186/s12932-020-00068-6

    • Article
    • Google Scholar
  2. 2.

    Voegelin A, Senn A-C, Kaegi R, Hug SJ (2019) Reductive dissolution of As(V)-bearing Fe(III)-precipitates formed by Fe(II) oxidation in aqueous solutions. Geochem Trans 20(1):2

    • Article
    • Google Scholar
  3. 3.

    Schaefer MV, Handler RM, Scherer MM (2017) Fe(II) reduction of pyrolusite (β-MnO2) and secondary mineral evolution. Geochem Trans 18(1):7

    • Article
    • Google Scholar
  4. 4.

    Kubicki JD, Kabengi N, Chrysochoou M, Bompoti N (2018) Density functional theory modeling of chromate adsorption onto ferrihydrite nanoparticles. Geochem Trans 19(1):8

    • Article
    • Google Scholar
  5. 5.

    Sowers TD, Stuckey JW, Sparks DL (2018) The synergistic effect of calcium on organic carbon sequestration to ferrihydrite. Geochem Trans 19(1):4

    • Article
    • Google Scholar
  6. 6.

    Stuckey JW, Goodwin C, Wang J, Kaplan LA, Vidal-Esquivel P, Beebe TP, Sparks DL (2018) Impacts of hydrous manganese oxide on the retention and lability of dissolved organic matter. Geochem Trans 19(1):6

    • Article
    • Google Scholar
  7. 7.

    Sundman A, Byrne JM, Bauer I, Menguy N, Kappler A (2017) Interactions between magnetite and humic substances: redox reactions and dissolution processes. Geochem Trans 18(1):6

    • Article
    • Google Scholar
  8. 8.

    Zhu Y, Liu J, Goswami O, Rouff AA, Elzinga EJ (2018) Effects of humic substances on Fe(II) sorption onto aluminum oxide and clay. Geochem Trans 19(1):3

    • Article
    • Google Scholar
  9. 9.

    Cade-Menun BJ, Elkin KR, Liu CW, Bryant RB, Kleinman PJA, Moore PA (2018) Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochem Trans 19(1):7

    • Article
    • Google Scholar
  10. 10.

    Hamilton JG, Grosskleg J, Hilger D, Bradshaw K, Carlson T, Siciliano SD, Peak D (2018) Chemical speciation and fate of tripolyphosphate after application to a calcareous soil. Geochem Trans 19(1):1

    • Article
    • Google Scholar
  11. 11.

    Strawn DG (2018) Review of interactions between phosphorus and arsenic in soils from four case studies. Geochem Trans 19(1):10

    • Article
    • Google Scholar
  12. 12.

    Siebecker MG, Chaney RL, Sparks DL (2018) Natural speciation of nickel at the micrometer scale in serpentine (ultramafic) topsoils using microfocused X-ray fluorescence, diffraction, and absorption. Geochem Trans 19(1):14

    • Article
    • Google Scholar
  13. 13.

    Gou W, Siebecker MG, Wang Z, Li W (2018) Competitive sorption of Ni and Zn at the aluminum oxide/water interface: an XAFS study. Geochem Trans 19(1):9

    • Article
    • Google Scholar
  14. 14.

    Fan T, Li C, Gao J, Zhou D, Alves ME, Wang Y (2018) Wien effect of Cd/Zn on soil clay fraction and their interaction. Geochem Trans 19(1):5

    • Article
    • Google Scholar
  15. 15.

    Knight AW, Tigges AB, Ilgen AG (2018) Adsorption of copper (II) on mesoporous silica: the effect of nano-scale confinement. Geochem Trans 19(1):13

    • Article
    • Google Scholar
  16. 16.

    Zeng L, Wan B, Huang R, Yan Y, Wang X, Tan W, Liu F, Feng X (2018) Catalytic oxidation of arsenite and reaction pathways on the surface of CuO nanoparticles at a wide range of pHs. Geochem Trans 19(1):12

    • Article
    • Google Scholar
  17. 17.

    Schindler M, Mantha H, Hochella MF (2019) The formation of spinel-group minerals in contaminated soils: the sequestration of metal(loid)s by unexpected incidental nanoparticles. Geochem Trans 20(1):1

    • Article
    • Google Scholar

Download references

Affiliations

  1. Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
    • Young-Shin Jun
  2. Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, USA
    • Mengqiang Zhu
  3. Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
    • Derek Peak
Authors
  1. Young-Shin JunView author publicationsYou can also search for this author in
    • PubMed
    • Google Scholar
  2. Mengqiang ZhuView author publicationsYou can also search for this author in
    • PubMed
    • Google Scholar
  3. Derek PeakView author publicationsYou can also search for this author in
    • PubMed
    • Google Scholar

Contributions

Y-SJ, MZ and DP wrote the articles together. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Young-Shin Jun.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Jun, Y., Zhu, M. & Peak, D. Frontiers and advances in environmental soil chemistry: a special issue in honor of Prof. Donald L. Sparks. Geochem Trans 21, 6 (2020). https://doi.org/10.1186/s12932-020-00070-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12932-020-00070-y



中文翻译:

环境土壤化学的前沿与进展:纪念Donald L. Sparks教授的特刊。

塑像

唐纳德·斯帕克斯教授

本期地球化学交易为纪念和纪念他的一生而致敬的是Donald L. Sparks教授,植物和土壤科学系的S. Hallock du Pont主席以及特拉华大学(UD)的特拉华环境研究所所长。长期在环境土壤化学领域的研究兴趣和成就。Sparks博士因在土壤和环境地球化学领域具有深远影响力和变革性的工作,作为教育家和指导者的出色记录以及对地球化学界的服务而获得2015年美国化学学会地球化学部奖章。在获得博士学位之前,Sparks博士于1975年获得肯塔基大学的农学学士学位和1976年的土壤科学硕士学位。1979年获得弗吉尼亚理工学院和州立大学土壤科学博士学位。博士

在过去的30年中,Sparks博士的研究从根本上改变了我们对土壤中有毒金属和植物养分的命运以及固体-水界面化学反应的认识。他的研究利用同步加速器X射线和其他光谱技术,以分子尺度确定土壤中金属和养分的形式,揭示了它们如何与矿物质表面相互作用并在植物中积累。这些信息决定了土壤中污染物的迁移率,毒性和生物利用度,可用于制定土壤修复的有效策略。当我们开始计划此荣誉特刊时,我们邀请了与Sparks博士共享这一科学领域的专家和同事。特刊由此产生,突出了环境地球化学和土壤化学方面的重要挑战,并介绍了这些领域的最新进展。我们还汇集了一系列研究文章,举例说明了了解矿泉水界面的最新实验和计算方法的最新进展。

特刊从Sparks博士的专题文章开始,该篇文章介绍了土壤化学在气候变化中以及在土壤与养分和新兴有机污染物(例如抗生素,激素以及全氟和多氟烷基物质(PFAS))之间的关键相互作用中日益重要的地位。斯帕克斯博士为环境土壤化学提供了未来的研究方向以及挑战和机遇[1]。在土壤中,两个重要的反应性元素是铁和锰(氢氧化物)氧化物。投稿文章提供了土壤中这些高反应性矿物的有趣例子,并强调了在分子尺度上理解它们的重要性:Voegelin等。考察了与环境相关的一组含砷的Fe(III)沉淀物的还原溶解动力学,这些沉淀物的结构随其结构中磷酸盐(P)和硅酸盐(Si)含量的变化而变化[2]。Schaefer等人描述了Fe(II)水溶液与软锰矿(β-MnO2),使用电子显微镜,X射线衍射,水铁和锰分析,以及57FeMössbauer光谱学,描述了Fe(II)和Mn / Fe氧化物之间的连续氧化还原化学[3]。通过实验分析和密度泛函理论(DFT)计算,Kubicki等人。模拟铬酸盐和亚铁水合物纳米颗粒之间的相互作用[4]。然后,Sowers等人的几篇文章。[5],Stuckey等。[6],Sundman等。[7],朱等。[8]讨论了铁和锰(氢)氧化物如何与经历氧化还原反应和溶解的有机化合物相互作用。此外,Cade-Menun等人。[9]和汉密尔顿等。[10]通过使用电感耦合等离子体光谱,P核磁共振和X射线吸收光谱研究土壤中磷酸盐作为养分的命运和运输。Strawn等。提供了一个很好的综述,使用四个案例研究讨论了土壤中的磷和砷。土壤中的镍,锌和铜也是微量过渡金属和重要营养素。Siebecker等人使用微聚焦X射线荧光,衍射和吸收光谱。报道蛇纹石表层土壤中镍的自然形态[12]和Gou等。报告了镍和锌在氧化铝上的竞争性吸附[13]。范等。测量含镉和锌的胶体悬浮液中的维恩效应,以确定与含镉土壤中镉和锌离子吸附有关的结合能[14]。除宏观胶体外,土壤还包含许多纳米级的孔隙。奈特等。讨论了纳米级限制作用对介孔二氧化硅吸附铜离子的影响,并强调了土壤颗粒中孔隙的重要独特的纳米级性质[15]。此外,工程纳米材料也可以进入自然土壤环境并成为土壤的附带成分,但是对环境的影响却鲜为人知。为此,Zeng等人使用原位快速扫描X射线吸收光谱(Q-XAS)分析研究了CuO纳米粒子及其在砷存在下的催化行为[16]。另一个示例性的附带纳米粒子是尖晶石,含锌磁铁矿(Zn 为此,Zeng等人使用原位快速扫描X射线吸收光谱(Q-XAS)分析研究了CuO纳米粒子及其在砷存在下的催化行为[16]。另一个示例性的附带纳米粒子是尖晶石,含锌磁铁矿(Zn 为此,Zeng等人使用原位快速扫描X射线吸收光谱(Q-XAS)分析研究了CuO纳米粒子及其在砷存在下的催化行为[16]。另一个示例性的附带纳米粒子是尖晶石,含锌磁铁矿(Zn在加拿大安大略省Timmins的一个铜冶炼厂附近发现了0.5 Fe 2.5 O 4)和最小Pb 3 O 4 [17]。特刊涵盖了多种过渡金属,有机物,营养,毒素和土壤成分,并介绍了由最先进的X射线技术,NMR和高分辨率透射电子显微镜进行的研究。激动人心的讨论提供了对土壤系统的宏观到纳米级的见解,并举例说明了Sparks博士在其职业生涯中一直追求的主题。

回想起我们对特刊的首次征集,我们对地球化学协会的热情印象深刻,这反映了斯帕克斯博士在环境土壤化学领域的奉献精神和领导力。我们非常感谢同事的支持,并很高兴分享本期特刊。为促进其传播,地球化学交易期刊开发编辑Samuel Winthrop先生和Jan Margulies先生以及Springer Nature的环境科学期刊的高级编辑Sherestha Saini博士在处理稿件方面提供了帮助。我们希望,本期专刊能够传播到更广泛的环境土壤地球化学界。最后,谢谢火花博士,您在环境土壤化学领域的领导以及对我们许多人的启发。

  1. 1。

    Sparks DL(2020):环境土壤化学的黄金时期。地球化学译本21:5。https://doi.org/10.1186/s12932-020-00068-6

    • 文章
    • 谷歌学术
  2. 2。

    Voegelin A,Senn AC,Kaegi R,Hug SJ(2019)在水溶液中还原溶解由Fe(II)氧化形成的含As(V)的Fe(III)沉淀。Geochem Trans 20(1):2

    • 文章
    • 谷歌学术
  3. 3。

    谢弗MV,处理程序RM,舍雷尔MM(2017)的Fe(II)还原软锰矿(β-MnO的2)和次级矿物演化。地球化学译本18(1):7

    • 文章
    • 谷歌学术
  4. 4。

    Kubicki JD,Kabengi N,Chrysochoou M,Bompoti N(2018)铬酸盐吸附到三水铁矿纳米粒子上的密度泛函理论建模。地球化学译本19(1):8

    • 文章
    • 谷歌学术
  5. 5,

    Sowers TD,Stuckey JW,Sparks DL(2018)钙对有机碳螯合至水铁矿的协同作用。地球化学译本19(1):4

    • 文章
    • 谷歌学术
  6. 6。

    Stuckey JW,Goodwin C,Wang J,Kaplan LA,Vidal-Esquivel P,Beebe TP,Sparks DL(2018)含水锰氧化物对溶解有机物的保留和不稳定性的影响。地球化学译本19(1):6

    • 文章
    • 谷歌学术
  7. 7

    桑德曼(Sundman A),拜恩(Byrne JM),鲍尔一世(Bauer I),孟圭(Mengey N),卡普勒(Kappler)A(2017)磁铁矿与腐殖质之间的相互作用:氧化还原反应和溶解过程。地球化学译本18(1):6

    • 文章
    • 谷歌学术
  8. 8。

    朱Y,刘健,Goswami O,Rouff AA,Elzinga EJ(2018)腐殖质对Fe(II)在氧化铝和粘土上吸附的影响。地球化学译本19(1):3

    • 文章
    • 谷歌学术
  9. 9。

    Cade-Menun BJ,Elkin KR,Liu CW,Bryant RB,Kleinman PJA,Moore PA(2018)通过Mehlich III土壤试验表征了从土壤中提取的磷形态。地球化学译本19(1):7

    • 文章
    • 谷歌学术
  10. 10。

    Hamilton JG,Grosskleg J,Hilger D,Bradshaw K,Carlson T,Siciliano SD,Peak D(2018)在石灰性土壤上施用后的三聚磷酸盐的化学形态和归宿。地球化学译本19(1):1

    • 文章
    • 谷歌学术
  11. 11。

    Strawn DG(2018)通过四个案例研究回顾了土壤中磷与砷之间的相互作用。地球化学译本19(1):10

    • 文章
    • 谷歌学术
  12. 12

    Siebecker MG,Chaney RL,Sparks DL(2018)利用微聚焦X射线荧光,衍射和吸收,在蛇纹石(超音速)表土中以微米级自然形成镍。地球化学译本19(1):14

    • 文章
    • 谷歌学术
  13. 13

    Gou W,Siebecker MG,Wang Z,Li W(2018)Ni / Zn在氧化铝/水界面的竞争性吸附:XAFS研究。地球化学译本19(1):9

    • 文章
    • 谷歌学术
  14. 14。

    范婷,李春,高俊,周丹,阿尔维斯·梅,王Y(2018)镉/锌对土壤黏土组分及其相互作用的维恩效应。地球化学译本19(1):5

    • 文章
    • 谷歌学术
  15. 15

    Knight AW,Tigges AB,Ilgen AG(2018)介孔二氧化硅对铜(II)的吸附:纳米级限制作用。地球化学译本19(1):13

    • 文章
    • 谷歌学术
  16. 16。

    Zeng L,Wan B,Huang R,Yan Y,Wang X,Tan W,Liu F,Feng X(2018)砷在宽pH值下的催化氧化和CuO纳米颗粒表面的反应路径。地球化学译本19(1):12

    • 文章
    • 谷歌学术
  17. 17。

    Schindler M,Mantha H,Hochella MF(2019)污染土壤中尖晶石族矿物的形成:意外的偶发纳米粒子对金属(胶体)的螯合。Geochem Trans 20(1):1

    • 文章
    • 谷歌学术

下载参考

隶属关系

  1. 华盛顿大学能源与环境与化学工程系,密苏里州圣路易斯,美国63130
    • 俊英俊
  2. 怀俄明大学生态系统科学与管理系,美国怀俄明州拉勒米,82071
    • 朱梦强
  3. 加拿大萨斯卡通萨斯喀彻温大学土壤科学系,S7N 5A8,加拿大
    • 德里克峰
作者
  1. Young-Shin Jun查看作者出版物您也可以在以下位置搜索该作者
    • 考研
    • 谷歌学术
  2. 朱梦强查看作者出版物您也可以在以下位置搜索该作者
    • 考研
    • 谷歌学术
  3. Derek Peak View作者的出版物您还可以在以下位置搜索该作者
    • 考研
    • 谷歌学术

会费

Y-SJ,MZ和DP一起撰写了这些文章。所有作者阅读并认可的终稿。

通讯作者

对应于Young-Shin Jun。

利益争夺

作者宣称他们没有竞争利益。

发行人须知

对于出版的地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用栏中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

Jun,Y.,Zhu,M.和Peak,D.环境土壤化学的前沿与进展:纪念Donald L. Sparks教授的特刊。地球化学反式 21, 6(2020)。https://doi.org/10.1186/s12932-020-00070-y

下载引文

  • 发表时间

  • DOI https //doi.org/10.1186/s12932-020-00070-y

更新日期:2020-04-22
down
wechat
bug