当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition.
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-04-29 , DOI: 10.1021/acsami.0c05819
Sudeep Sharma 1 , Ashok Chhetry 1 , Md Sharifuzzaman 1 , Hyosang Yoon 1 , Jae Yeong Park 1
Affiliation  

In recent years, highly sensitive pressure sensors that are flexible, biocompatible, and stretchable have attracted significant research attention in the fields of wearable electronics and smart skin. However, there has been a considerable challenge to simultaneously achieve highly sensitive, low-cost sensors coupled with optimum mechanical stability and an ultralow detection limit for subtle physiological signal monitoring devices. Targeting aforementioned issues, herein, we report the facile fabrication of a highly sensitive and reliable capacitive pressure sensor for ultralow-pressure measurement by sandwiching MXene (Ti3C2Tx)/poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) composite nanofibrous scaffolds as a dielectric layer between biocompatible poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate /polydimethylsiloxane electrodes. The fabricated sensor exhibits a high sensitivity of 0.51 kPa-1 and a minimum detection limit of 1.5 Pa. In addition, it also enables linear sensing over a broad pressure range (0-400 kPa) and high reliability over 10,000 cycles even at extremely high pressure (>167 kPa). The sensitivity of the nanofiber-based sensor is enhanced by MXene loading, thereby increasing the dielectric constant up to 40 and reducing the compression modulus to 58% compared with pristine PVDF-TrFE nanofiber scaffolds. The proposed sensor can be used to determine the health condition of patients by monitoring physiological signals (pulse rate, respiration, muscle movements, and eye twitching) and also represents a good candidate for a next generation human-machine interfacing device.

中文翻译:

基于MXene复合纳米纤维支架的可穿戴电容式压力传感器,可可靠地采集人体生理信号。

近年来,柔性,生物相容性和可拉伸性的高灵敏度压力传感器在可穿戴电子设备和智能皮肤领域引起了广泛的研究关注。但是,要同时实现高度灵敏,低成本的传感器,以及对微妙的生理信号监测设备的最佳机械稳定性和超低检测极限,存在巨大挑战。针对上述问题,在本文中,我们报告了通过将MXene(Ti3C2Tx)/聚偏二氟乙烯-三氟乙烯(PVDF-TrFE)复合纳米纤维支架夹层作为介电材料,轻松制造用于超低压测量的高灵敏,可靠的电容式压力传感器的过程生物相容性聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐/聚二甲基硅氧烷电极之间的有机层。制成的传感器具有0.51 kPa-1的高灵敏度和1.5 Pa的最小检测极限。此外,即使在极高的压力下,它也可以在宽压力范围(0-400 kPa)内进行线性传感,并在10,000次循环中具有高可靠性压力(> 167 kPa)。与原始PVDF-TrFE纳米纤维支架相比,通过MXene加载可增强基于纳米纤维的传感器的灵敏度,从而将介电常数提高至40,并将压缩模量降低至58%。所提出的传感器可用于通过监视生理信号(脉搏率,呼吸,肌肉运动和眼部抽搐)来确定患者的健康状况,并且也代表了下一代人机界面设备。51 kPa-1,最小检测极限为1.5 Pa。此外,即使在极高的压力(> 167 kPa)下,它也可以在较宽的压力范围(0-400 kPa)内进行线性传感,并在10,000个循环内具有很高的可靠性。与原始PVDF-TrFE纳米纤维支架相比,通过MXene加载可增强基于纳米纤维的传感器的灵敏度,从而将介电常数提高至40,并将压缩模量降低至58%。所提出的传感器可用于通过监视生理信号(脉搏率,呼吸,肌肉运动和眼部抽搐)来确定患者的健康状况,并且也代表了下一代人机界面设备。51 kPa-1,最小检测极限为1.5 Pa。此外,即使在极高的压力(> 167 kPa)下,它也可以在较宽的压力范围(0-400 kPa)内进行线性传感,并在10,000个循环内具有很高的可靠性。与原始PVDF-TrFE纳米纤维支架相比,通过MXene加载可增强基于纳米纤维的传感器的灵敏度,从而将介电常数提高至40,并将压缩模量降低至58%。所提出的传感器可用于通过监视生理信号(脉搏率,呼吸,肌肉运动和眼部抽搐)来确定患者的健康状况,并且也代表了下一代人机界面设备。即使在极高的压力(> 167 kPa)下也可进行000次循环。与原始PVDF-TrFE纳米纤维支架相比,通过MXene加载可增强基于纳米纤维的传感器的灵敏度,从而将介电常数提高至40,并将压缩模量降低至58%。所提出的传感器可用于通过监视生理信号(脉搏率,呼吸,肌肉运动和眼部抽搐)来确定患者的健康状况,并且也代表了下一代人机界面设备。即使在极高的压力(> 167 kPa)下也可进行000次循环。与原始PVDF-TrFE纳米纤维支架相比,通过MXene加载可增强基于纳米纤维的传感器的灵敏度,从而将介电常数提高至40,并将压缩模量降低至58%。所提出的传感器可用于通过监视生理信号(脉搏率,呼吸,肌肉运动和眼部抽搐)来确定患者的健康状况,并且也代表了下一代人机界面设备。
更新日期:2020-04-17
down
wechat
bug