当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal-Organic-Frameworks to Design Atomic Co1-P1N3 Interfacial Structure for Promoting Catalytic Performance
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-04-17 , DOI: 10.1021/jacs.0c02229
Jiawei Wan 1 , Zhenghang Zhao 2 , Huishan Shang 3 , Bo Peng 4 , Wenxing Chen 3 , Jiajing Pei 4 , Lirong Zheng 5 , Juncai Dong 5 , Rui Cao 6 , Ritimukta Sarangi 6 , Zhuoli Jiang 3 , Danni Zhou 3 , Zhongbin Zhuang 4 , Jiatao Zhang 3 , Dingsheng Wang 1 , Yadong Li 1
Affiliation  

Engineering coordination environment is offering great opportunity in performance tunability of isolated metal single-atom catalysts. As for the most popular metal-Nx (M-Nx) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of active metal center and promoting its catalytic performance, which is still a challenge. Herein, we pro-posed a new synthetic strategy of an in-situ phosphatizing of triphenylphosphine encapsulated within metal-organic-frameworks for designing atomic Co1-P1N3 interfacial structure, where a cobalt single atom is co-stabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co-P1N3 interfacial structure exhibits excellent activity and durability for hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm-2 and a small Tafel slope of 47 mV dec-1, which are greatly superior to those of catalyst with Co-N4 interfacial structure. We discover that the bond-length-extended high-valence Co1-P1N3 atomic interface structure plays crucial role in boosting the HER performance, which is supported by in-situ XAFS measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.

中文翻译:

包封在金属有机框架内的三苯基膦的原位磷化以设计用于提高催化性能的原子 Co1-P1N3 界面结构

工程协调环境为孤立金属单原子催化剂的性能可调性提供了巨大的机会。对于最流行的金属-Nx(M-Nx)结构,用其他一些电负性相对较弱的原子替换N原子被认为是优化活性金属中心配位环境并提高其催化性能的一种有前景的策略,这仍然是一个挑战。在此,我们提出了一种新的合成策略,将封装在金属有机骨架中的三苯基膦原位磷化,用于设计 Co1-P1N3 原子界面结构,其中一个钴单原子被一个 P 原子和三个 N 共稳定原子(表示为 Co-SA/P-原位)。在酸性介质中,具有 Co-P1N3 界面结构的 Co-SA/P 原位催化剂对析氢反应 (HER) 具有出色的活性和耐久性,在 10 mA cm-2 时具有 98 mV 的低过电位和 47 mV dec 的小塔菲尔斜率-1,大大优于具有 Co-N4 界面结构的催化剂。我们发现键长扩展的高价 Co1-P1N3 原子界面结构在提高 HER 性能方面起着至关重要的作用,这得到了原位 XAFS 测量和密度泛函理论 (DFT) 计算的支持。我们希望这项工作能够促进高性能金属单原子催化剂的发展。大大优于具有 Co-N4 界面结构的催化剂。我们发现键长扩展的高价 Co1-P1N3 原子界面结构在提高 HER 性能方面起着至关重要的作用,这得到了原位 XAFS 测量和密度泛函理论 (DFT) 计算的支持。我们希望这项工作能够促进高性能金属单原子催化剂的发展。大大优于具有 Co-N4 界面结构的催化剂。我们发现键长扩展的高价 Co1-P1N3 原子界面结构在提高 HER 性能方面起着至关重要的作用,这得到了原位 XAFS 测量和密度泛函理论 (DFT) 计算的支持。我们希望这项工作能够促进高性能金属单原子催化剂的发展。
更新日期:2020-04-17
down
wechat
bug