当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Azimuthal multiplexing 3D diffractive optics.
Scientific Reports ( IF 3.8 ) Pub Date : 2020-04-15 , DOI: 10.1038/s41598-020-63075-8
Haiyan Wang 1 , Rafael Piestun 1
Affiliation  

Diffractive optics have increasingly caught the attention of the scientific community. Classical diffractive optics are 2D diffractive optical elements (DOEs) and computer-generated holograms (CGHs), which modulate optical waves on a solitary transverse plane. However, potential capabilities are missed by the inherent two-dimensional nature of these devices. Previous work has demonstrated that extending the modulation from planar (2D) to volumetric (3D) enables new functionalities, such as generating space-variant functions, multiplexing in the spatial or spectral domain, or enhancing information capacity. Unfortunately, despite significant progress fueled by recent interest in metasurface diffraction, 3D diffractive optics still remains relatively unexplored. Here, we introduce the concept of azimuthal multiplexing. We propose, design, and demonstrate 3D diffractive optics showing this multiplexing effect. According to this new phenomenon, multiple pages of information are encoded and can be read out across independent channels by rotating one or more diffractive layers with respect to the others. We implement the concept with multilayer diffractive optical elements. An iterative projection optimization algorithm helps solve the inverse design problem. The experimental realization using photolithographically fabricated multilevel phase layers demonstrates the predicted performance. We discuss the limitations and potential of azimuthal multiplexing 3D diffractive optics.

中文翻译:

方位多路复用3D衍射光学器件。

衍射光学越来越受到科学界的关注。经典的衍射光学器件是2D衍射光学元件(DOE)和计算机生成的全息图(CGH),它们在单独的横向平面上调制光波。但是,这些设备的固有二维特性错过了潜在的功能。先前的工作表明,将调制从平面(2D)扩展到体积(3D)可以实现新功能,例如生成空间变量功能,在空间或光谱域中进行复用或增强信息容量。不幸的是,尽管近来对超表面衍射的兴趣推动了重大进展,但3D衍射光学仍相对未开发。在这里,我们介绍方位复用的概念。我们提出,设计,并演示了显示这种多路复用效应的3D衍射光学器件。根据这一新现象,多页信息被编码,并且可以通过相对于另一层旋转一个或多个衍射层而跨独立的通道读取信息。我们用多层衍射光学元件来实现这一概念。迭代投影优化算法有助于解决逆设计问题。使用光刻制造的多层相层的实验实现证明了预期的性能。我们讨论了方位复用3D衍射光学的局限性和潜力。多页信息经过编码,可以通过相对于另一层旋转一个或多个衍射层,在独立的通道上读取信息。我们用多层衍射光学元件来实现这一概念。迭代投影优化算法有助于解决逆设计问题。使用光刻制造的多层相层的实验实现证明了预期的性能。我们讨论了方位复用3D衍射光学的局限性和潜力。多页信息经过编码,可以通过相对于另一层旋转一个或多个衍射层,在独立的通道上读取信息。我们用多层衍射光学元件来实现这一概念。迭代投影优化算法有助于解决逆设计问题。使用光刻制造的多层相层的实验实现证明了预期的性能。我们讨论了方位复用3D衍射光学的局限性和潜力。使用光刻制造的多层相层的实验实现证明了预期的性能。我们讨论了方位复用3D衍射光学的局限性和潜力。使用光刻制造的多层相层的实验实现证明了预期的性能。我们讨论了方位复用3D衍射光学的局限性和潜力。
更新日期:2020-04-24
down
wechat
bug