当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Insights into Lithium and Sodium Storage in Porous Carbon.
Nano Letters ( IF 9.6 ) Pub Date : 2020-04-16 , DOI: 10.1021/acs.nanolett.0c00943
Gaojing Yang 1, 2 , Xiaoyun Li 1, 3 , Zhaoruxin Guan 4 , Yuxin Tong 2, 5 , Bin Xu 4 , Xuefeng Wang 2, 3, 5 , Zhaoxiang Wang 1, 2, 3 , Liquan Chen 1, 2, 3
Nano Letters ( IF 9.6 ) Pub Date : 2020-04-16 , DOI: 10.1021/acs.nanolett.0c00943
Gaojing Yang 1, 2 , Xiaoyun Li 1, 3 , Zhaoruxin Guan 4 , Yuxin Tong 2, 5 , Bin Xu 4 , Xuefeng Wang 2, 3, 5 , Zhaoxiang Wang 1, 2, 3 , Liquan Chen 1, 2, 3
Affiliation
![]() |
The lithium and sodium storage behavior of porous carbon remains controversial, though it shows excellent cycling stability and rate performances. This Letter discloses the insertion, adsorption, and filling properties of porous carbon. 7Li nuclear magnetic resonance (NMR) spectroscopy recognized inserted and adsorbed lithium in this porous carbon but did not observe any other forms of lithium above 0.0 V vs. Li+/Li. In addition, although lithium insertion mainly takes place at low potentials, adsorption was found to be the main form of lithium storage throughout the investigated potential range. Such a storage feature is responsible for the excellent rate performance and high specific capacity of porous carbon. Raman spectroscopy further demonstrated the structural reversibility of the carbon in different potential ranges, verifying the necessity to optimize the potential range for a better cycling performance. These findings provide insights for the design and application of porous carbon.
中文翻译:
多孔碳中锂和钠储存的见解。
尽管多孔碳的锂和钠储存性能表现出出色的循环稳定性和速率性能,但仍存在争议。该信公开了多孔碳的插入,吸附和填充特性。7Li核磁共振(NMR)光谱识别出该多孔碳中已插入并吸附了锂,但未观察到任何高于0.0 V(相对于Li + / Li)的锂。此外,尽管锂的插入主要发生在低电势下,但在整个研究的电势范围内,吸附是锂存储的主要形式。这种存储特征是多孔碳具有优异的速率性能和高比容量的原因。拉曼光谱进一步证明了碳在不同电位范围内的结构可逆性,验证优化潜在范围以获得更好的循环性能的必要性。这些发现为多孔碳的设计和应用提供了见识。
更新日期:2020-04-14
中文翻译:

多孔碳中锂和钠储存的见解。
尽管多孔碳的锂和钠储存性能表现出出色的循环稳定性和速率性能,但仍存在争议。该信公开了多孔碳的插入,吸附和填充特性。7Li核磁共振(NMR)光谱识别出该多孔碳中已插入并吸附了锂,但未观察到任何高于0.0 V(相对于Li + / Li)的锂。此外,尽管锂的插入主要发生在低电势下,但在整个研究的电势范围内,吸附是锂存储的主要形式。这种存储特征是多孔碳具有优异的速率性能和高比容量的原因。拉曼光谱进一步证明了碳在不同电位范围内的结构可逆性,验证优化潜在范围以获得更好的循环性能的必要性。这些发现为多孔碳的设计和应用提供了见识。