当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface charging activated mechanism change: A computational study of O, CO, and CO2 interactions on Ag electrodes
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2020-04-12 , DOI: 10.1016/j.jechem.2020.03.080
Ilker Tezsevin , Mauritius C.M. van de Sanden , Süleyman Er

Electrocatalytic and plasma-activated processes receive increasing attention in catalysis. Density functional theory (DFT) calculations are state-of-the-art tools for the fundamental study of reaction mechanisms and predicting the performance of catalytic materials. Proper application of DFT-based methods is crucial when investigating charge-doped electrode surfaces during electrocatalytic and plasma-activated reactions. Here, as a model electrode for plasma-activated CO2 splitting, we studied the interactions of O, CO, and CO2 with the neutral and progressively charged Ag(111) metal surfaces. We show that the application of correction procedures is necessary to obtain accurate adsorption energy profiles of O atoms, CO and CO2 molecules on Ag surfaces that are under the influence of additional electrons. Interestingly, the oxidation of CO is found to shift from a Langmuir–Hinshelwood mechanism on a neutral electrode to an Eley–Rideal mechanism on charged electrodes. Furthermore, we show that the surface charging of Ag(111) electrodes increase their CO2 reduction performance by enhancing the adsorption of O atoms and desorption of CO molecules. A further increase in the absolute charge-state of the electrode surface is expected to waive the thermodynamic barriers for the CO2 splitting reaction.



中文翻译:

表面电荷激活机制的变化:Ag电极上O,CO和CO 2相互作用的计算研究

电催化和等离子体活化过程在催化中越来越受到关注。密度泛函理论(DFT)计算是用于反应机理基础研究和预测催化材料性能的最先进工具。在研究电催化反应和等离子体活化反应过程中的电荷掺杂电极表面时,基于DFT的方法的正确应用至关重要。在这里,作为等离子体活化的CO 2分解的模型电极,我们研究了O,CO和CO 2与中性和渐进带电的Ag(111)金属表面的相互作用。我们表明,校正程序的应用对于获得O原子,CO和CO 2的准确吸附能谱是必要的Ag表面上受其他电子影响的分子。有趣的是,发现CO的氧化从中性电极上的Langmuir-Hinshelwood机制转变为带电电极上的Eley-Rideal机制。此外,我们表明,Ag(111)电极的表面电荷通过增强O原子的吸附和CO分子的解吸来提高其CO 2还原性能。期望电极表面的绝对电荷状态的进一步增加将放弃用于CO 2分解反应的热力学势垒。

更新日期:2020-04-12
down
wechat
bug